Deflection at the centre - maximum deflection, Mechanical Engineering

Deflection at the centre - maximum deflection:

A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflection at the centre, maximum deflection & slopes at the ends and at the centre. Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA  + RB  = 24 × 2 = 48 kN          --------- (1)

1870_Deflection at the centre - maximum deflection.png

Taking moments around A,

24 × 2 × 1 = RB  × 6

RB  = 8 kN (↑)                     -------- (2)

RA  = 48 - 8 = 40 kN (↑).         ------------(3)

By apply the Udl over the portion DB downwards and upwards,

1262_Deflection at the centre - maximum deflection1.png

Figure

M = 40 x - 24 x × (x/2) + 24 ( x - 2) ( (x - 2)/2)

Note down that the third term vanishes if x < 2 m.

= 40 x - 12 x2  + 12 ( x - 2)2               ------- (4)

EI d 2 y/ dx2 = 40 x - 12 x 2  + 12 ( x - 2)2          ------- (5)

EI dy / dx = 40 x2/2- 12 x3 /3+ 12 ( x - 2)3/3 + C1

= 20 x2 - 4 x3 + 4 ( x - 2)3 + C1           -------- (6)

EIy = 20 x 2/3 - x4 + (x - 2)4 + C1 x + C2            -------- (7)

Here again note that the third term vanishes for x < 2 m.

at A,      x = 0,    y = 0  ∴ C2  = 0

at B,  x = 6 m,     y = 0         

0 = 20 × 63 /3 - 64  + (6 - 2)4 + C1 × 6

C1 =- 20 × 12 + 36 × 6 - ((16 × 16 )/6)=- 200/3

∴          EI dy/dx = 20 x2  - 4 x3  + 4 ( x - 2)3  - 200/3         -------- (8)

The third term vanishes.

Slope at A, (x = 0),     27

θA  = -200/3EI =- (200 × 103)/ (3 × 20 ×106)

            = -(1/300) rad = - 3.33 × 10- 3  rad

 

Slope at B, (x = 6 m),

EI θ B = 200 × 62  - 4 × 63  + 4 (6 - 2)3  - (200/3)

 θ  = 136/ 3 EI = (136 × 103 )/(3 × 20 ×106)

= + 2.27 × 10- 3  radian

Slope at C, (x = 3 m), i.e. x > 2 m

EI θ C = 20 × 32  - 4 × 33  + 4 (3 - 2)3  - (200/3)

θC = 20 /3 EI = 0.47 × 10- 3  radians

EIy =( 20 x 3/3)- x4  + ( x - 2)4  - (200/3) x                   -------- (9)

Deflection at centre, (x = 3 m),

EIyC = (20/3) × 33  - 34  + (3 - 2)4  - (200 /3)× 3

yC  = - 100 / EI =  - 100 × 103 × 103 / (20 × 106)

= - 5 mm

For maximum deflection,

dy/ dx  = 0

0 = 20 x2  - 4x3  + 4 ( x - 2)3  - (200/3)

= 20 x2  - 4x3  + 4x3  - 32 - 24 x2  + 48 x - (200 /3)

=- 4x2  + 48 x - (296 /3)

∴          x2  - 12x + (74 /3 )= 0

x = 2.63 m , x > 2m

EIy max = (20/3) × 2.633  - 2.634  + (2.63 - 2)4  - (200/3) × 2.63 = - 101.7

∴ ymax  = - 5.087 mm;  - 5.1 mm

Posted Date: 1/21/2013 5:36:11 AM | Location : United States







Related Discussions:- Deflection at the centre - maximum deflection, Assignment Help, Ask Question on Deflection at the centre - maximum deflection, Get Answer, Expert's Help, Deflection at the centre - maximum deflection Discussions

Write discussion on Deflection at the centre - maximum deflection
Your posts are moderated
Related Questions

Convert the following readings of pressure to KPa absolute, assuming that the barometer reads 760mm Hg: (a) 100 psig, (b) 8in. Hg vacuum, and (c) 76in Hg gage.

a) What is method study. Define various stages of method study. b) What are main techniques used to study path of movement in method study. a) Discuss the process to establis

1. A hydraulic pump generates 240W and supplies hydraulic fluid at a rate of 5.1l/min to a linear actuator which has a bore size of 50 mm and a double piston rod diameter of 20mm.

Determine the change in diameter: A thin spherical shell of 1.8 m diameter is 10 mm thick. This is filled with a liquid so that the internal pressure is 1 N/mm 2 . Determine t

Plate clutch pressure height: Check plate clutch pressure leg height by placing the plate clutch pressure on the surface plate. Plate clutch pressure should not tilt on the surfac

define elastomer.explain in details?

DEVELOPMENT OF COATED ELECTRODES Can welding be done by bare wire? Why do we require coating at all? What are the different types of coating? What are the stages in

Q. Describe Polythionic Acid Corrosion? Although it is not typically thought of as high temperature corrosion, polythionic acid stress corrosion cracking occurs in areas where

Determine the springs needed to absorb the energy: A vehicle weighing 28 kN and running at 2.5 m/sec is to be brought to rest by a buffer springs. Determine the number of spri