Definition of a function, Mathematics

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of the ordered pair.

Let's see if we can make out just what it means.  Let's take a look at the given example that will expectantly help us figure all this out.

Example:  The following relation is a function.

{(-1, 0)  (0, -3) ( 2, -3)  (3, 0)  ( 4, 5)}


From these ordered pairs we contain the following sets of first components (that means. the first number through each ordered pair) and second components (that means the second number through each ordered pair).

1st components : {-1, 0, 2, 3, 4}                      2nd   components : {0, -3, 0, 5}

 For the set of second components observed that the "-3" occurred in two ordered pairs however we only listed it once.

In order to see why this relation is a function just picks any value from the set of first components. After that, go back up to the relation and determine every ordered pair wherein this number is the first component & list all the second components from those ordered pairs. The list of second components will contain exactly one value.

For instance let's select 2 from the set of first components.  From the relation we see that there is accurately one ordered pair along with 2 as a first component, ( 2, -3) .  Thus the list of second components (that means the list of values from the set of second components) related with 2 is exactly one number, -3.

Notice that we don't care that -3 is the second component of second ordered par in the relation. That is completely acceptable.  We just don't desire there to be any more than one ordered pair along with 2 as a first component.

We looked at single value through the set of first components for our fast example here but the result will be the similar for all the other choices.  Regardless of the option of first components there will be accurately one second component related with it.

Thus this relation is a function.

In order to actually get a feel for what the definition of a function is telling us we have to probably also check out an instance of a relation that is not a function.

Posted Date: 4/6/2013 6:17:33 AM | Location : United States

Related Discussions:- Definition of a function, Assignment Help, Ask Question on Definition of a function, Get Answer, Expert's Help, Definition of a function Discussions

Write discussion on Definition of a function
Your posts are moderated
Related Questions
Grimm plc (Grimm) has the following transactions: a) On 1 st January 2010, Grimm issued 400,000 convertible £1 6% debentures for £600,000.  The professional fees associated wit

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

A mailbox opening is 4.5 inches high and 5 inches wide. Determine the widest piece of mail able to ?t in the mailbox without bending? a. 9.5 inches b. 2.2 inches c. 6.7 in

Charlie needs to know the area of his property, that measures 120 ft through 150 ft. Which formula will he use? The area of a rectangle is length × width.

A simple example of fraction would be a rational number of the form p/q, where q ≠ 0. In fractions also we come across different types of them. The two fractions

principal=2000 rate=5% time=2 years find compound interest

A straight line AB on the side of a hill is inclined at 15.0° to the horizontal. The axis of a tunnel 486ft. long is inclined 28.6° below the horizontal lies in a vertical plane wi

The cost of renting a bike at the local bike shop can be represented through the equation y = 2x + 2, where y is the total cost and x is the number of hours the bike is rented. Whi

If ABCD isaa square of side 6 cm find area of shaded region

If secA= x+1/4x, prove that secA+tanA=2x or  1/2x. Ans:    Sec? = x +  1/4x ⇒ Sec 2 ? =( x + 1/4x) 2                             (Sec 2 ?= 1 + Tan 2 ?) Tan 2 ? = ( x +