Definition of a function, Mathematics

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of the ordered pair.

Let's see if we can make out just what it means.  Let's take a look at the given example that will expectantly help us figure all this out.

Example:  The following relation is a function.

{(-1, 0)  (0, -3) ( 2, -3)  (3, 0)  ( 4, 5)}


From these ordered pairs we contain the following sets of first components (that means. the first number through each ordered pair) and second components (that means the second number through each ordered pair).

1st components : {-1, 0, 2, 3, 4}                      2nd   components : {0, -3, 0, 5}

 For the set of second components observed that the "-3" occurred in two ordered pairs however we only listed it once.

In order to see why this relation is a function just picks any value from the set of first components. After that, go back up to the relation and determine every ordered pair wherein this number is the first component & list all the second components from those ordered pairs. The list of second components will contain exactly one value.

For instance let's select 2 from the set of first components.  From the relation we see that there is accurately one ordered pair along with 2 as a first component, ( 2, -3) .  Thus the list of second components (that means the list of values from the set of second components) related with 2 is exactly one number, -3.

Notice that we don't care that -3 is the second component of second ordered par in the relation. That is completely acceptable.  We just don't desire there to be any more than one ordered pair along with 2 as a first component.

We looked at single value through the set of first components for our fast example here but the result will be the similar for all the other choices.  Regardless of the option of first components there will be accurately one second component related with it.

Thus this relation is a function.

In order to actually get a feel for what the definition of a function is telling us we have to probably also check out an instance of a relation that is not a function.

Posted Date: 4/6/2013 6:17:33 AM | Location : United States

Related Discussions:- Definition of a function, Assignment Help, Ask Question on Definition of a function, Get Answer, Expert's Help, Definition of a function Discussions

Write discussion on Definition of a function
Your posts are moderated
Related Questions

In the shape of a cone a tank of water is leaking water at a constant rate of 2 ft 3 /hour .  The base radius of the tank is equal to 5 ft and the height of the tank is 14 ft.

1. In an in finite horizon capital/consumption model, if kt and ct are the capital stock and consumption at time t, we have f(kt) = ct+kt+1 for t ≥ 0 where f is a given production

Describe Three Ways to Write Negative Fractions? There are three different ways that a negative fraction can be written. They are all represent the same value. 1. The negative

Union of Sets Venn diagram presenting the union of sets A and B or A?B = Shaded area is demonstrated below: A ?B = Shaded area

how to divide an arc in three equal parts

Give the Introduction to Scientific Notation? In mathematics, it can be very difficult and time-consuming to do calculations involving very large and very small numbers. This i

If x = b y where both b > 0, x > 0, then we define y = log b x, which is read as "y is the log to the base b of x". This means that, log b x or y is the number to

adison earned $25 mowing her neighbor''s lawn. then she loaned her friend $18, and got $50 from her grandmother for her birthday. she now has $86. how much money did adison have to