Cross product - vector, Mathematics

Assignment Help:

Cross Product

In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D) vectors.  

 As well, before getting into how to calculate these we should point out a major variation in between dot products and cross products. The product of a dot product is a number and the result of a cross product is a vector!  Be cautious not to confuse the two.

Thus, let's begin with the two vectors a = (a1, a2, a3) illustrated by the formula, and b = (b1, b2 , b3) then the cross product is illustrated by formula

a * b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)

This is not a simple formula to remember.  There are two methods to derive this formula.  Both of them make use of the fact that the cross product is actually the determinant of a 3x3 matrix.  If you don't be familiar with what this is that is don't worry about it.  You don't require to know anything about matrices or determinants to make use of either of the methods.  The notation for the determinant is like this,

473_Cross Product - Vector 3.png

The first row in the above determinant is the standard basis vectors and should appear in the order given here.  The 2nd row is the components of a? and the third row is the components of b.  Now, let's take a look at the dissimilar methods for getting the formula.

 The first technique uses the Method of Cofactors.  If you do not know the method or technique of cofactors that is fine, the result is all that we want.  Formula is given below:

103_Cross Product - Vector 2.png

This formula is not as hard to remember as it might at first come out to be.  First, the terms change in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it also the row of standard basis vectors.

The second method is little easier; though, many textbooks don't cover this method as it will only work on 3x3 determinants.  This technique says to take the determinant as listed above and after that copy the first two columns onto the end as displayed below.

2002_Cross Product - Vector 1.png

We now have three diagonals which move from left to right and three diagonals which move from right to left.  We multiply all along each diagonal and add those that move from left to right and subtract those which move from right to left.


Related Discussions:- Cross product - vector

what is probability that point will be chosen from triagle, In the adjoini...

In the adjoining figure ABCD is a square with sides of length 6 units points P & Q are the mid points of the sides BC & CD respectively. If a point is selected at random from the i

Formula to estimate distance around circle table, If Lisa wants to know the...

If Lisa wants to know the distance around her circular table, that has a diameter of 42 in, which formula will she use? The circumference or distance around a circle is π times

Math134, how to sketch feasible set

how to sketch feasible set

Sequences, what is the answer to 2.1 to 4.2

what is the answer to 2.1 to 4.2

Evaluate the following exponentials limit, Evaluate following limits. ...

Evaluate following limits. Solution: Let's begin this one off in the similar manner as the first part. Let's take the limit of each piece. This time note that since our l

Difference between absolute and relative in the definition, Difference betw...

Difference between absolute and relative in the definition Now, let's talk a little bit regarding the subtle difference among the absolute & relative in the definition above.

Matrices, what is the business application of matrices

what is the business application of matrices

Find out the variance and standard deviation, The probability of a rare dis...

The probability of a rare disease striking a described population is 0.003. A sample of 10000 was examined. Determine the expected no. suffering from the disease and thus find out

Describe three ways to write negative fractions, Describe Three Ways to Wri...

Describe Three Ways to Write Negative Fractions? There are three different ways that a negative fraction can be written. They are all represent the same value. 1. The negative

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd