Concatenation, Theory of Computation

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while scanning a string in L1 . L2, for instance, when to switch from keeping track of factors for L1 to keeping track of factors from L2.

Assuming that the alphabets were not disjoint, there is (evidently, since LT is not closed under concatenation) no way, in general, to know that. For the recognizable languages, on the other hand, we have the convenience of being able to work with non-determinism. We don't actually have to know when to switch from one automaton to the next. Whenever we get to a point in the string that could possibly be the end of the pre?x that is in L1 we can just allow for a non-deterministic choice of whether to continue scanning for A1 (the machine recognizing L1) or to switch to scanning for A2. Since whenever the string is in L1 .  L2 there will be some correct place to switch and since acceptance by a NFA requires only that there some accepting computation, the combined automaton will accept every string in L1 . L2. Moreover, the combined automaton will accept a string iff there is some point at which it can be split into a string accepted by A1 followed by one accepted by A2: it accepts all and only the strings in L1 . L2.

Posted Date: 3/21/2013 3:18:22 AM | Location : United States







Related Discussions:- Concatenation, Assignment Help, Ask Question on Concatenation, Get Answer, Expert's Help, Concatenation Discussions

Write discussion on Concatenation
Your posts are moderated
Related Questions
Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For

How useful is production function in production planning?

So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows: 1. Define maxrhs(G) to be the maximum length of the

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

A common approach in solving problems is to transform them to different problems, solve the new ones, and derive the solutions for the original problems from those for the new ones


We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

Computer has a single LIFO stack containing ?xed precision unsigned integers (so each integer is subject to over?ow problems) but which has unbounded depth (so the stack itself nev