Compare and contrast various sorting techniques, Data Structure & Algorithms

Q. Compare and contrast various sorting techniques or methods with respect to the memory space and the computing time.                                                                                                    


Insertion sort:- Because of the presence of nested loops, each of which can take n iterations, insertion sort is O(n2). This bound is very tight, because the input in reverse order can actually achieve this bound. So complexity is equal to= (n(n-1))/2 = O(n2). Shellsort: - The running time of Shellsort depends on the option of increment sequence. The worst-case running time of the Shellsort, using the Shell's increments, is (n2).

Heapsort:- The basic approach is to build a binary heap of the n elements. This stage takes the O(n) time. We then perform n delete_min operations on it. The elements leave the heap smallest first, in the sorted order. By recording these elements in the second array and then copying the array back again, we sort the n elements. Since each delete_min takes O(log n) time, the total running time becoms O(n log n).

Mergesort:- Mergesort is a the example of the techniques which is used to analyze recursive routines. We may assume that n is a power of 2, so that we always divide into even halves. For n = 1, the time to mergesort is constant, to which we will

The two recursive mergesorts of size n/2,  in addition the time to merge, which is linear. The equations below say this exactly:

T(1) = 1

T(n) = 2T(n/2) + n

Quicksort:-  Similar to  mergesort,  quicksort  is  recursive,  and  hence,  its  analysis needs solving a recurrence formula. We will do the analysis for a quicksort, assuming a random pivot (no median-of-three partitioning) and no cutoff for such small files. We will take T(0) = T(1) = 1, as in mergesort. The running time of quicksort is equal to the running time of the two recursive calls an addition to the linear time spent in the partition (the pivot selection takes some constant time). This gives the basic quicksort relation as follows

T(n) = T(i) + T(n - i - 1) + cn

Posted Date: 7/11/2012 1:32:01 AM | Location : United States

Related Discussions:- Compare and contrast various sorting techniques, Assignment Help, Ask Question on Compare and contrast various sorting techniques, Get Answer, Expert's Help, Compare and contrast various sorting techniques Discussions

Write discussion on Compare and contrast various sorting techniques
Your posts are moderated
Related Questions
Simulation of queues: Simulation is the process of forming an abstract model of a real world situation in order to understand the effect of modifications and the effect of introdu that the following inequality is correct or incorrect. n!=O(n^n)

1. Use the Weierstrass condition, find the (Strongly) minimizing curve and the value of J min for the cases where x(1) = 0, x(2) = 3. 2. The system = x 1 + 2u; where

INSERT FUNCTION /*prototypes of insert & find functions */ list * insert_list(list *); list * find(list *, int); /*definition of  anyinsert function */ list * inser

Explain in brief about the Container An entity which holds finitely many other entities. Just as containers such as boxes, baskets, bags, pails, cans, drawers, and so for


Define the term - Array A fixed length, ordered collection of values of same type stored in contiguous memory locations; collection may be ordered in several dimensions.

Programming for hash table?

Determination of Time Complexity The RAM Model The random access model (RAM) of computation was devised through John von Neumann to study algorithms. In computer science,

A binary search tree is constructed through the repeated insertion of new nodes in a binary tree structure. Insertion has to maintain the order of the tree. The value to the lef