Bottleneck for each product, Mathematics

Assignment Help:

 A company makes 2 products, Product A and Product B. The product characteristics are shown in the following table.

Product

A

B

Price ($/unit)

$800

$1,000

Cost of materials ($/unit)

$200

$250

Cost of labor ($/unit)

$150

$200

Market demand per week (units)

200

150

 

The products are fabricated and assembled in four different workstations (W, X, Y, Z). Every workstation is available for 60 hours a week and there is no setup time required when shifting from the production of 1 product to any other. The processing requirements to make one unit of every product are shown in the table.


Processing time (min/unit)

Workstation

Product A

Product B

W

8

12

X

9

12

Y

10

20

Z

5

8

 

a)      Using the traditional method, which refers to maximizing the contribution margin per unit for every product, what is the optimal product mix and resulting profit?

b)      Using the bottleneck method, which refers to maximizing the contribution margin per minute at the bottleneck for every product, what is the optimal product mix and resulting profit?

 


Related Discussions:- Bottleneck for each product

Absolute convergent, Find out if each of the subsequent series are absolute...

Find out if each of the subsequent series are absolute convergent, conditionally convergent or divergent. Solution: (a) The above is the alternating harmonic ser

What is equivalence relation, What is equivalence relation?  Prove that rel...

What is equivalence relation?  Prove that relation  'congruence modulo' (  ≡mod m) is an equivalence relation.  Ans: A relation R illustrated on a nonempty set A is said to be

Series - convergence or divergence, Series - Convergence/Divergence In ...

Series - Convergence/Divergence In the earlier section we spent some time getting familiar with series and we briefly explained convergence and divergence.  Previous to worryin

Estimate root of given equations, The positive value of k for which x 2 +K...

The positive value of k for which x 2 +Kx +64 = 0 & x 2 - 8x + k = 0 will have real roots . Ans: x 2 + K x + 64 = 0 ⇒  b 2 -4ac > 0 K 2 - 256 > 0 K

Polynomial time algorithm - first order query, For queries Q 1 and Q 2 , w...

For queries Q 1 and Q 2 , we say Q 1 is contained in Q 2 , denoted Q 1 ⊆ Q 2 , iff Q 1 (D) ⊆ Q 2 (D) for every database D. The container problem for a fixed Query Q 0 i

What did she pay per pound, Mona purchased one and a half pounds of turkey ...

Mona purchased one and a half pounds of turkey at the deli for $6.90. What did she pay per pound? Divide the cost of the turkey by the weight; $6.90 ÷ 1.5 = $4.60.

Simple equations, three times the first of the three consecutive odd intege...

three times the first of the three consecutive odd integers is 3 more than twice the third integer. find the third integer.

Solve the inequality |x - 1| + |x - 2|, Solve the inequality |x - 1| + |x -...

Solve the inequality |x - 1| + |x - 2|≤ 3. Working Rule:    First of all measure the expression to zero whose modulus happens in the given inequation and from this search the va

Need help , understandin rates and unitrates

understandin rates and unitrates

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd