Assessing heuristic searches-artificial intelligence, Computer Engineering

Assessing Heuristic Searches

Given a specific problem you want to create an agent to solve, there can be more than one way of specifying it as a search problem, more than one option for the search strategy and different possibilities for heuristic measures. To a large extent, it is hard to predict what the best option will be, and it will require some experimentation to find out them. In some kind of cases, - if we calculate the effective branching rate, as described below - we may tell for sure if one heuristic measure is always being out-performed by another.

The Effective Branching Rate

Assessing heuristic functions is an essential part of Artificial Intelligence research: a specific heuristic function can sound like a good idea, but in practice give no discernible increase in the quality of the search. Search quality may be determined experimentally  in  terms  of  the  output  from  the  search,  and  by  using  sevral measures likewise  the effective branching rate. Imagine  a specific  problem P has been solved by search strategy S by expanding N nodes, and the solution lay at depth D in the space. Then the effective branching value of S for P is calculated by comparing S to a uniform search U. An example of a uniform search is a breadth first search where many branches from any node are always the same (as in our baby naming example). We then suppose the (uniform) branching rate of U is like  that, on exhausting its search to depth D, it too would have expanded defiantly N nodes. This imagined branching rate, written b*, is the effective branching rate of S and is calculated thus:

N = 1 + b* + (b*)2 + ... + (b*)D.

Rearranging this equation will give a value for b*. For an example (taken from  Norvig and Russell )imagine S finds a solution at depth 5 having expanded 52 nodes. In this type of case:

 52 = 1 + b* + (b*)2 + ... + (b*)5.

and it turns out that b*=1.91. To calculate its value , we use the well known mathematical identity:

 

This make us enables to write a polynomial for which b* is a 0, and we may solve this using numerical techniques such as Newton's method.

581_Assessing Heuristic Searches.png 
It is typically the case that the effective branching rate of a search strategy is same  over all the problems it is used for, because of this it is suitable to average b* over a small set of problems to give a valid account. If a heuristic search has a branching rate near to 1, then it is a good sign.  We say that 1 heuristic function  h1 dominates another h2 if the search using h1 always has a lower effective branching rate than h2. Having a lower effective branching rate is obviously desirable because it means a quicker search.

Posted Date: 10/2/2012 3:01:37 AM | Location : United States







Related Discussions:- Assessing heuristic searches-artificial intelligence, Assignment Help, Ask Question on Assessing heuristic searches-artificial intelligence, Get Answer, Expert's Help, Assessing heuristic searches-artificial intelligence Discussions

Write discussion on Assessing heuristic searches-artificial intelligence
Your posts are moderated
Related Questions
Describe your choice specifically and fully, explaining and discussing at length in what respects the advance builds upon or departs from present technology or practice and the sev

Fitness function - canonical genetic algorithm: Conversely the fitness function will use an evaluation function to calculate a value of worth for the individual accordingly th

Explain the working of any one of centralized SPC? Standby mode of operation is the easiest of dual processor configuration operations. Usually, one processor is active and

What are the advantages and disadvantages of a Smart Card?    Advantages of Smart Card: 1. It gives convenience & support for multiple currencies over borders. 2. Used

Microsoft access name has been transformed to Microsoft office access. This software incorporates relational database management system which joins GUI (graphical user interface) w

Q. Illustrate working of Pocket and PC-Card Modems? Pocket Modems: Small external Modems used with notebook PCs.  PC-Card Modems:  PC and Modems are read with PCMCIA slots w

What is database integration? Database integration is the ability to give user-friendly and cost-effective software solutions for data infrastructure management by the interfac

Q. What are the Logic Micro-operations? Logic operations are fundamentally binary operations that are performed on string of bits stored in the registers. For a logic micro-ope

is data bus is bidirectional

Generally the Instruction Set Architecture (ISA) of a processor can be distinguished using five categories:  Operand Storage in the CPU - Where are the operands kept other t