Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
A function is an equation for which any x which can be plugged into the equation will yield accurately one y out of the equation.
There it is. i.e. the definition of functions which we're going to employ and will probably be easier to decipher just what it means.
Before we study this a little more note that we utilized the phrase "x which can be plugged into" in the definition. It tends to imply that not all x's can be plugged in an equation & it is actually correct. We will come back & discuss it in more detail towards the end of this section, though at this point just remember that we can't divide by zero & if we desire real numbers out of the equation we can't take the square root of a -ve number. Thus, with these two instances it is clear that we will not always be capable to plug in every x into any equation.
Further, while dealing along with functions we are always going to suppose that both x and y will be real numbers. In other terms, we are going to forget that we know anything regarding complex numbers for a little bit whereas we deal with this section.
Okay, with that out of the way let's get back to the definition of a function & let's look at some instance of equations which are functions & equations that aren't functions.
Errors Are Useful : While teaching children, you must have found theft making mistakes off and on. How do you respond to the errors'? What do they tell you about the child-failur
Assume A and B are symmetric. Explain why the following are symmetric or not. 1) A^2 - B^2 2) (A+B)(A-B) 3) ABA 4) ABAB 5) (A^2)B
i dint get how to do math promblems
If f(x) is an infinitely differentiable function so the Taylor Series of f(x) about x=x 0 is, Recall that, f (0) (x) = f(x) f (n) (x) = nth derivative of f(x)
We have independent observations Xi, for i = 1, . . . , n, from a mixture of m Poisson distributions with component probabilities d c and rates l c, for c = 1, . . . ,m. We decid
Q. What is Conditional Probability? Ans. What is the probability that George will pass his math test if he studies? We can assume that the probabilities of George passing
one bathroom is 0.3m long how long is a row of 8 tiles
Two stations due south of a tower, which leans towards north are at distances 'a' and 'b' from its foot. If α and β be the elevations of the top of the tower from the situation, Pr
Determine y′ for xy = 1 . Solution : There are in fact two solution methods for this problem. Solution 1: It is the simple way of doing the problem. Just solve for y to
1. Consider the model Y t = β 0 + β 1 X t + ε t , where t = 1,..., n. If the errors ε t are not correlated, then the OLS estimates of β 0 and β
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd