Working definition of continuity , Mathematics

Assignment Help:

"Working" definition of continuity

A function is continuous in an interval if we can draw the graph from beginning point to finish point without ever once picking up our pencil. The graph has just two discontinuities as there are only two places where we ought to be picked up our pencil in sketching it.

In other terms, a function is continuous if its graph contains no holes or breaks in it.

For several functions it's simple to find out where it won't be continuous.  Functions won't be continuous where we contain things such as division by zero or logarithms of zero.  Let's take a rapid look at an instance of determining where a function is not continuous.

Example   Find out where the function below is not continuous.

                            h (t ) =4t + 10 / t 2 - 2t -15

Solution

Rational functions are continuous everywhere apart from where we have division by zero.  Thus all that we have to determine where the denominator is zero. That's simple enough to find out by setting the denominator equivalent to zero & solving.

                                        t 2 - 2t -15 = (t - 5) (t + 3) = 0

Thus, the function will not be continuous at t=-3 & t=5.

A nice consequence of continuity is the given fact.

Fact 2

If  f ( x ) is continuous at x = b and 446_limit28.pngthen,

1266_limit29.png


Related Discussions:- Working definition of continuity

Linear equation, develop any two linear equation which are reducible into l...

develop any two linear equation which are reducible into linear form from our daily life by cross multiplication

Methods of set representation, I have an assignment of set theory, please E...

I have an assignment of set theory, please Explain Methods of set representation.

Money, What is the formulate of finding commission

What is the formulate of finding commission

If a sequence is bounded and monotonic then it is convergent, Theorem ...

Theorem If {a n } is bounded and monotonic then { a n } is convergent.  Be cautious to not misuse this theorem.  It does not state that if a sequence is not bounded and/or

Example of inverse matrix, Determine the inverse of the following matrix, i...

Determine the inverse of the following matrix, if it exists. We first form the new matrix through tacking onto the 3 x 3 identity matrix to this matrix.  It is, We

Multiply the polynomials, Multiply following. (a) (4x 2 -x)(6-3x) (b)...

Multiply following. (a) (4x 2 -x)(6-3x) (b) (2x+6) 2 Solution  (a) (4x 2 - x )(6 - 3x ) Again we will only FOIL this one out. (4x 2  - x )(6 - 3x) = 24x 2 -

Find a relationship chart and closeness ranks, 1.A manufacturing facility c...

1.A manufacturing facility consists of five departments, 1, 2, 3, 4 and 5. It produces four components having the manufacturing product routings and production volumes indicated in

Factoring polynomials with higher degree, Factoring Polynomials with Degree...

Factoring Polynomials with Degree Greater than 2 There is no one method for doing these generally.  However, there are some that we can do so let's take a look at a some exa

Determine that the series is convergent or divergent, Determine or find out...

Determine or find out if the subsequent series is convergent or divergent.  If it converges find out its value. Solution To find out if the series is convergent we fir

prove area of rhombus on hypotenuse right-angled triangle, Prove that the ...

Prove that the area of a rhombus on the hypotenuse of a right-angled triangle, with one of the angles as 60o, is equal to the sum of the areas of rhombuses with one of their angles

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd