Work in volume problems, Mathematics

Assignment Help:

Work : It is the last application of integral which we'll be looking at under this course. In this section we'll be looking at the amount of work which is done through a force in moving an object.

Under a first course in Physics you classically look at the work as a constant force F, does while moving an object over a distance of d.  In such cases the work,

W = Fd

Though, most forces are not constant and will depend upon in which exactly the force is acting. Therefore, let's assume that the force at any x is specified by F(x). Afterward the work complete by the force in moving an object from x = a to x = b is specified by,

483_Work.png

Consider that if the force is constant we find the correct formula for a constant force.

2023_Work1.png

Here b-a is only the distance moved or d.

Therefore, let's take a look at a couple of illustration of non-constant forces.


Related Discussions:- Work in volume problems

Vectors, If r,R denote position vectors of points on the straight lines in ...

If r,R denote position vectors of points on the straight lines in the direction of a and b respectively, and if n is a unit vector perpendicular to both these directions, show that

Find an example of congruential unit random number generator, 1. Suppose th...

1. Suppose the arrival times of phone calls in a help centre follow a Poisson process with rate 20 per hour (so the inter-arrival times are independent exponential random variables

Calculate the area and circumference of a circle, Calculate the area and ci...

Calculate the area and circumference of a circle: Calculate the area and circumference of a circle with a 3" radius.  Solution: A =      πr2

Differential Equations, 1.Verify Liouville''s formula for y "-y" - y'' + y ...

1.Verify Liouville''s formula for y "-y" - y'' + y = 0 in (0, 1) ? 2.Find the normalized differential equation which has {x, xex} as its fundamental set. 3.6Find the general soluti

Properties of definite integral, Properties 1.  ∫ b a f ( x ) dx = -∫ ...

Properties 1.  ∫ b a f ( x ) dx = -∫ b a f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral

Real Analysis/Advanced Calculus (Needs to be a full proof), Both need to be...

Both need to be a full page, detailed proof. Not just a few lines of proof. (1) “Every convergent sequence contains either an increasing, or a decreasing subsequence (or possibly

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd