What is tunnel effect and applications of tunnel effect, Electrical Engineering

Assignment Help:

What is tunnel effect? Discuss the Alpha decay as an example of tunnel effect. Prove that tunneling increases on decreasing the height and width of the barrier. Explain what do you mean by mean by the terms potential well and potential barrier. Obtain an expression for transmission coefficient of a rectangular potential barrier.

Where U0 = height of the rectangular potential barrier. Draw graphs showing variation of T with particle energy E and barrier width a.

What is quantum mechanical "tunneling" ? Give one example.

 Potential Step

If a particle having energy less than V0 i.e. E0 approaches this barrier form the left i.e. from 1st region, classically the particle will always be reflected and hence will not penetrate the barrier. However, ware mechanics predicts that the particle has some probability of penetrating to region , the   probability of penetration being greater if and a are smaller. Morever, if E>V0 classical mechanics predicts that the particle will always be transmitted; while according to wave-mechanics, the particle has a finite probability of transmission and hence it is not certain that, the particle will penetrate the barrier.            If a particle with energy E is incident on a thin energy on a thin energy barrier of height greater than E, there is a finite probability  of the particle penetrating the barrier. This phenomenon is called the tunnel effect. This effect was used by George Gamow in 1928 to explain the process of decay exhibited by radioactive nuclei.

Applications of Tunnel Effect

Emission of particles from radioactive nuclei of Alpha-decay. The average energy of an particle formed within the nucleus is less than the height of the  potential barrier around the nucleus which is formed by the nuclear binding forces. Classically, the particle cannot escape from the nucleus, but Quantum mechanically it tunnels the barrier. This tunneling constitutes radioactive decay. The decay of nuclei by emission of an alpha-particle can be regarded as a tunneling process. A radioactive nucleus can be thought of having an alpha particle (a helium nucleus) trapped in a spherical potential well arising out of extremely strong nuclear attractive forces between the nucleons. These  attractive forces are short range. They operate on the particle so long as it is inside the nucleus. Once the alpha-particle is out of the nucleus Coulomb repulsive force operates between the positive charge of alpha-particle and the positive charge of residual nucleus. This electrical repulsion is negligible when the alpha-particle is under the effect of a strong attractive nuclear force up to a certain distance (nuclear size) after which long range coulomb repulsive force operates on it. As the exact form of nuclear forces is still unknown,  the potential as seen by the alpha-particle is generally represented as shown in fig. Thus there appears a potential barrier height E < V (coulomb repulsive barrier), then according to classical mechanics such alpha-particles cannot come out of the nucleus. But because of wave nature they actually have small probability of tunneling through the barrier. The tunneling probability per unit time is equal to the number of bounces per unit time multiplied by the tunneling coefficient per of the natural radioactive nuclei is of the order of 107 m/sec. and the nuclear size is of the order of 10-14 m, the alpha particle strikes the barrier about 1021 times per second. Each time it bounces the barrier the probability that it penetrates the barrier is equal to the transmission coefficient T. Hence the tunneling probability per unit time is for a barrier much higher than the energy of the particle and the barrier width a = R c -R from fig. the decay rate is thus determined predominantly by the exponential factor in T. Its value is very sensitive to actual shape of potential curve and can vary significantly in order of magnitude from nucleus to nucleus. Thus qualitatively it is possible to explain decay as an example of quantum mechanical Tunnel effect.

 


Related Discussions:- What is tunnel effect and applications of tunnel effect

What is the minimum sampling rate, Q. The magnitude spectrum of a continuou...

Q. The magnitude spectrum of a continuous  image is as given below.  a) Sketch the frequency response of the sampled spectrum if   ωs =1.5 ωm along x and 3ωm along  y directions

Chemistry, Write short note on hardness of water and its units

Write short note on hardness of water and its units

Semiconductor material, Semiconductor Material: Semiconductor is a mat...

Semiconductor Material: Semiconductor is a material that has a conductivity level somewhere between the extreme of an insulator and a conductor   Resistivity of a material

Earthing in electricity and gas hazards, Earthing : Any electrical applian...

Earthing : Any electrical appliance with a metal casing or with metal parts, likely to be touched by an operator is potentially dangerous. The danger is that an internal or extern

Power Systems, are you able to help with power system

are you able to help with power system

Disaster management, role of electrical engineer in disaster management

role of electrical engineer in disaster management

Compare with register, Compare with Register The contents  of the re...

Compare with Register The contents  of the register  are compared with  the contents  of the accumulator  here  register  may be  any one  of the  A, B, C, D E, H, or L  reg

Write a note on superconductors, Write a note on superconductors. Super...

Write a note on superconductors. Superconductors- The resistivity of most metals rises with increase in temperature and vice-versa. Some metals and chemical compounds are there

What are the features used mode 2 in 8255, What are the features used mode ...

What are the features used mode 2 in 8255? The single 8-bit port in-group A is available. 1. The 8-bit port is bi-directional and additionally a 5-bit control port is availa

Find the modulated signal in each case, Let the message signal m(t) = α cos...

Let the message signal m(t) = α cos (2πf m t) be used to either frequency-modulate or phase- modulate the carrier Ac cos(2πf c t). Find the modulated signal in each case.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd