Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Shortcuts, pls told the maths shortcuts

pls told the maths shortcuts

Prove that one of three consecutive integers divisible by 3, Prove that one...

Prove that one of every three consecutive integers is divisible by 3. Ans: n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1, 3q +

Some general facts about lines, First, larger the number (ignoring any minu...

First, larger the number (ignoring any minus signs) the steeper the line.  Thus, we can use the slope to tell us something regarding just how steep a line is. Next, if the slope

Find the co ordinates of p such that ap =3/7 ab and p lies, If A & B are (-...

If A & B are (-2,-2) and (2,-4) respectively, find the co ordinates of P such that AP =3/7 AB and P lies on the line segment AB.

Limit problem, limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

Vectors, apllication in business and economics

apllication in business and economics

Find the area of triangle, Find the area of TRIANGLE ? To find the area...

Find the area of TRIANGLE ? To find the area of a triangle, multiply the base (b) by the height (h), and divide the resulting number in half. In other words, area is. It is

Four is added to the quantity two minus the sum of negative, Four is added ...

Four is added to the quantity two minus the sum of negative seven and six. This answer is then multiplied through three. What is the result? This problem translates to the expr

Ordinary and partial differential equations, A differential equation is ter...

A differential equation is termed as an ordinary differential equation, abbreviated through odes, if this has ordinary derivatives in it. Similarly, a differential equation is term

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd