Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Multiple integrals, how to convert double integral into polar coordinates a...

how to convert double integral into polar coordinates and change the limits of integration

Probability, An unbiased die is tossed twice .Find the probability of getti...

An unbiased die is tossed twice .Find the probability of getting a 4,5,6 on the first toss and a 1,2,3,4 on the second toss

Draw tangent graph y = sec ( x ), G raph y = sec ( x ) Solution: As wi...

G raph y = sec ( x ) Solution: As with tangent we will have to avoid x's for which cosine is zero (recall that sec x =1/ cos x) Secant will not present at

Factors, what are the factors af 34?

what are the factors af 34?

What is the objective of lipids metabolism, What is the objective of lipids...

What is the objective of lipids metabolism ? After studying this unit, you will be able to: 1. explain how fatty acids are oxidized for the production of energy, 2. describe

Combining like terms, i don''t understand what my teacher when she talks ab...

i don''t understand what my teacher when she talks about when she talks about cosecutive integers etc... so can u help me???

Percents, If 2/3 of a number is 24 then 1/4 of a number is...

If 2/3 of a number is 24 then 1/4 of a number is...

Decimals, how do u add them together?

how do u add them together?

Find out all the critical points and derivation, Find out all the critical ...

Find out all the critical points for the function. Solution Following is the derivative for this function. Now, this looks unpleasant, though along with a little fa

What is the probability that the card is a queen, Five cards - the ten, jac...

Five cards - the ten, jack, queen, king and ace, are well shuffled with their face downwards. One card is then picked up at random. (i)  What is the probability that the card is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd