Utilizes the definition of the limit to prove the given limi, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

Solution

In this case both L & a are zero.  So, let ε < 0 is any number.  Don't worry regarding what the number is, ε is only some arbitrary number.   Now in according to the definition of the limit, if this limit is to be true we will have to determine some other number δ > 0 so that the following will be true.

|x2 - 0| < ε               whenever             0< |x-0|< δ

Or upon simplifying things we required,

                |x2   |< ε                whenever            0<|x|<0

Often the way to go through these is to begin with the left inequality & do a little simplification and distinguish if that recommend a choice for δ .  We'll begin by bringing the exponent out of the absolute value bars & then taking the square root of both sides.

                                |x|2   < ε   ⇒  |x| <√ ε

Now, the results of this simplification looks an awful lot like 0 <|x|< ε  along with the exception of the " 0 < " part. Missing that though isn't a problem; this is just telling us that we can't take x = 0 .  Thus, it looks like if we choose δ =√ ε .we have to get what we want.

We'll next have to verify that our choice of δ will give us what we desire, i.e.,

  |x|2   < ε         ⇒  0< |x| <√ ε

Verification is actually pretty much the similar work that we did to get our guess.  Firstly, let's again let ε < 0 be any number and then select δ =√ ε.  Now, suppose that 0 <| x | <√ ε.  We have to illustrates that by selecting x to satisfy this we will obtain,

                                                    |x2|   < ε

To begin the verification process we'll start with | x2| and then first strip out the exponent from the absolute values. Once it is done we'll employ our assumption on x, namely that  |x| < ε. Doing ball this gives,

|x2|   =|x| 2           strip exponent out of absolute value bars

      < (√ ε)2        use the assumption that    |x|   < ε

        = ε            simplify

Or, upon taking the middle terms out, if we suppose that 0 < |x |<√ ε .then we will get,

                                          |x2|   < ε

and this is accurately what we required to show.

Thus, just what have we done?  We've illustrated that if we choose ε >0 then we can determine a δ> 0  so that we have,

                                                         |x2 - 0 |< ε

and according to our definition it means that,

1737_limit31.png


Related Discussions:- Utilizes the definition of the limit to prove the given limi

Intermediate value theorem, Intermediate Value Theorem Suppose that f(x...

Intermediate Value Theorem Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b).   There then exists a number c such that, 1. a 2. f (

Discount, outdoor grill- regular price:$360 discount:33 1/3%

outdoor grill- regular price:$360 discount:33 1/3%

H, 6987+746-212*7665

6987+746-212*7665

Marketing of herbal products , To help Himalya herbal launch a successful m...

To help Himalya herbal launch a successful marketing campaign in the UK

Relationship between the entries of a rotation matrix, 1. A 3d rotation mat...

1. A 3d rotation matrix has 9 (3 by 3) entries, and a 2d rotation matrix has 4 (2 by 2) entries. How many actual degrees of freedom are there in a 3d or 2d rotation? In other words

Learning, my math skills are keeping me from getting my ged need help in al...

my math skills are keeping me from getting my ged need help in all areas

Solve following x - x e 5 x + 2 = 0 logarithms, Solve following  x - x  ...

Solve following  x - x  e 5 x + 2   = 0 . Solution : The primary step is to factor an x out of both terms. DO NOT DIVIDE AN x FROM BOTH TERMS!!!! Note as well that it i

Interval of convergence - sequences and series, Interval of Convergence ...

Interval of Convergence After that secondly, the interval of all x's, involving the endpoints if need be, for which the power series converges is termed as the interval of conv

Particular to general-how mathematical ideas grow, Particular to General : ...

Particular to General :  When I say 'tail', what do you think of? Do you think of the tail of a horse, or of a monkey? Or do you think of the tail of your pet dog? The tail of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd