Use of n-channel jfet, Electrical Engineering

Assignment Help:

Q. Use of N-channel JFET?

Generally, N-channel JFETs are more commonly used than P-channel. With no voltage applied between gate and source, the channel is a wide-open path for electrons to flow. However, if a voltage is applied between gate and source of such polarity that it reverse-biases the PN junction, the flow between source and drain connections becomes limited, or regulated, just as it was for bipolar transistors with a set amount of base current. Maximum gate-source voltage "pinches off" all current through source and drain, thus forcing the JFET into cutoff mode. This behavior is due to the depletion region of the PN junction expanding under the influence of a reverse-bias voltage, eventually occupying the entire width of the channel if the voltage is great enough.

Bipolar transistors are normally off devices: no current through the base, no current through the collector or the emitter. JFETs, on the other hand, are normally on devices: no voltage applied to the gate allows maximum current through the source and drain. Also take note that the amount of current allowed through a JFET is determined by a voltage signal rather than a current signal as with bipolar transistors. In fact, with the gate-source PN junction reverse-biased; there should be nearly zero current through the gate connection. For this reason, we classify the JFET as a voltage-controlled device, and the bipolar transistor as a current-controlled device.

If the gate-source PN junction is forward-biased with a small voltage, the JFET channel will "open" a little more to allow greater currents through. However, the PN junction of a JFET is not built to handle any substantial current itself, and thus it is not recommended to forward-bias the junction under any circumstances.


Related Discussions:- Use of n-channel jfet

Binary to octal conversion, Binary  to Octal Conversion To convert a b...

Binary  to Octal Conversion To convert a binary  number into octal  divide the number into  group  of three  bits each  starting from the least significant bit. Then put equiva

What do you mean by nibble, Q. What do you mean by Nibble? The nibble i...

Q. What do you mean by Nibble? The nibble is a collection of bits on a 4-bit boundary. It would not be a particularly interesting data structure except for two items BCD (binar

Evaluate gm and pm for the asymptotic bode plot, Q. The loop gain of an ele...

Q. The loop gain of an elementary feedback control system(see Figure) is given by G(s)·H(s), which is 10/(1+s/2)(1+s/6)(1+s/50). Sketch the asymptotic Bode plot of the loop-gain fu

Show color television receiver, A color television receiver is shown in Fig...

A color television receiver is shown in Figure in block diagram form, indicating only the basic functions. The early part forms a straightforward superheterodyne receiver, except f

Drift related to the instruments, If the instruments has no drift it is per...

If the instruments has no drift it is perfectly reproducible. No drift means that with a given input the measured values do not vary with time. Drift may be classified into thre

Different types of errors in measurement, Q.   Enumerate different types o...

Q.   Enumerate different types of errors in  measurement. How can these errors be minimized.                Sol. Types of errors: Errors may arise from different sources and

Find a local s-matrix for each triangle, Figure shows two first-order trian...

Figure shows two first-order triangular finite elements used to solve the Laplace equation for electrostatic potential.  Find a local S-matrix for each triangle, and a global S-mat

For the low-pass filter configuration calculate cf, Q. For the low-pass fil...

Q. For the low-pass filter configuration of Figure, with R i = R f = 1M, calculate C f such that the 3-dB point is at 1 kHz.

Find the total current and total resistance, For the circuit in figure, fin...

For the circuit in figure, find: a)  Total resistance b)  Total current c)  Current flow through resistor 6Ω and 4Ω

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd