Turning points - polynomials, Algebra

Assignment Help:

The "humps" where the graph varies direction from increasing to decreasing or decreasing to increasing is frequently called turning points.

 If we know that the polynomial contains degree n then we will know that there will be at most n -1 turning points in the graph.

Whereas this won't help much with the actual graphing procedure it will be a nice check.  If we contain a fourth degree polynomial with five turning points then we will know that we've done something incorrect as a fourth degree polynomial will contain no more than 3 turning points.

Next, we have to explore the relationship among the x-intercepts of a graph of a polynomial and the zeroes of the polynomial.  Remember again that to determine the x-intercepts of a function we have to solve the equation

Also, remember again that x = r is a zero of the polynomial, P ( x ) , provided P ( r ) = 0 .  However this means that x = r is also a solution to P ( x ) = 0 .

In other terms, the zeroes of polynomial are also the x-intercepts of the graph. Also, remember again that x-intercepts can either cross the x-axis or they can only touch the x-axis without in fact crossing the axis.

Notice as well through the graphs above that the x-intercepts can either flatten as they cross the x-axis or they can go by the x-axis at an angle.


Related Discussions:- Turning points - polynomials

Finding the inverse of a function, The process for finding the inverse of a...

The process for finding the inverse of a function is a quite simple one although there are a couple of steps which can on occasion be somewhat messy.  Following is the process G

Compound math, Ask question #15/16 to the percentage

Ask question #15/16 to the percentage

Turning points - polynomials, The "humps" where the graph varies direction ...

The "humps" where the graph varies direction from increasing to decreasing or decreasing to increasing is frequently called turning points .  If we know that the polynomial con

Exponential story problems., The cost of a can of Coca-Cola in 1960 was $0....

The cost of a can of Coca-Cola in 1960 was $0.10. The exponential function that models the cost of Coca-Cola by year is given below, where (t) is the number of years since 1960. C

Solving Proportions, 2 adults for 10 children and 3 adults for 12 children

2 adults for 10 children and 3 adults for 12 children

Basic Algebra, Find the following product (-4)(-2)(5)=

Find the following product (-4)(-2)(5)=

Find the quotient, what are the steps to find the quotient of two rational ...

what are the steps to find the quotient of two rational expressions?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd