The mean value theorem with proof, Mathematics

Assignment Help:

The Mean Value Theorem

 Assume f(x) is a function that satisfies both of the subsequent.

1.   f(x) is continuous on the closed interval [a,b].

2.   f(x) is differentiable on the open interval (a,b).

So there is a number c such that a < c < b and

f'(c) = (f(b) - f(a))/(b -a)

Or f(b) - f(a) = f'(c) (b - a)

 Proof

For illustration reasons let's assume that the graph of f(x) is,

154_mean value1.png

Note certainly that this may not seem as this, but we just require a fast sketch to make this easier to notice what we're talking about now.

The first thing is which we require is the equation of the secant line that goes through the two points A and B as demonstrated above. It is,

y = f(a) + ((f(b) - f(a))/(b -a)) (x -a)

Let's here define a new function, g(x), as to be the difference among f(x) and the equation of the secant line or,

 g(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a)) (x -a))

= f(x) - f(a) - (f(b) - f(a))/(b -a) (x -a))

Next, let's see that g(x) is the total of f(x) that is assumed to be continuous on [a,b], and a linear polynomial, that we know to be continuous all over, we know that g(x) should also be continuous on [a,b].

 Also, we can notice that g(x) should be differentiable on (a,b) since this is the total of f(x), that is assumed to be differentiable on (a,b), and a linear polynomial, that we know to be differentiable.

We could also have only calculated the derivative as follows,

g'(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a))

At that point we can notice that this exists on (a,b) as we assumed that f′(x) exists on (a,b)and the last term is only a constant.

At last, we have,

g(a) =  f(a) - (f(a) + ((f(b) - f(a))/(b -a)) (a -a))

= f(a) - f(a) = 0

g(b) =  f(b) - (f(a) + ((f(b) - f(a))/(b -a)) (b -a))

= f(b) - f(a) -(f(b) - f(a))= 0

Conversely, g(x) satisfies the three conditions of Rolle's Theorem and therefore we know that there should be a number c as a < c < b and that,

0 = g'(c) = f'(c) - ((f(b) - f(a))/(b -a))              =>                    f'(c) = ((f(b) - f(a))/(b -a))


Related Discussions:- The mean value theorem with proof

Ogive, How many types of ogives?

How many types of ogives?

Comercial maths, solve a trader purchases coffee at the rate of Rs. 350 per...

solve a trader purchases coffee at the rate of Rs. 350 per kg and mixes it with chicory bought at the rate of Rs.750 per kg in the ratio 5:2.If he sells the mixture at the rate of

Children have their own strategies for learning maths, Children Have Their ...

Children Have Their Own Strategies For Learning Vibhor, aged 7, was once asked if he knew what 'seven lots of eight' are. He said he didn't. He was then asked, "Can you work it

Word problem, A girl has 25 plants in all, 8 of them are tomatos. She has 1...

A girl has 25 plants in all, 8 of them are tomatos. She has 10 more bean plants than pepper plants. How many pepper plants does she have?

Geometry, In a square of side 8 cm two quadrant with taking the side of squ...

In a square of side 8 cm two quadrant with taking the side of square as radius are inscribed in the square..

Polynomials, In arithmetic, we deal with numbers. In contrast to this...

In arithmetic, we deal with numbers. In contrast to this, in algebra, we deal with symbols. These symbols are often represented by lower case alphabets. One of th

Find the cost price of the toy, A dealer sells a toy for Rs.24 and gains as...

A dealer sells a toy for Rs.24 and gains as much percent as the cost price of the toy. Find the cost price of the toy. Ans:    Let the C.P be x ∴Gain = x % ⇒ Gain = x

Show line graphs and histograms, Q. Show Line graphs and Histograms? A...

Q. Show Line graphs and Histograms? Ans. Line graphs are closely related to histograms. Look at the graph below. It shows the line graph of the example above but also in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd