Concrete to abstract-how mathematical ideas grow, Mathematics

Assignment Help:

Concrete to Abstract :  Mathematics, like all human knowledge, grows out of our concrete experiences. Let us take the example of three-dimensional shapes. Think about how you came to understand the concept of "roundness" and of a sphere. Was your mental process something like the following?

We see all sorts of objects around us. While dealing with them, we notice that some of these things, like a ball, an orange, a water melon, a 'laddu', have the same kind of regularity, namely, a roundness. And so, the notion of 'roundness' gradually develops in our mind. We can separate the objects that are round from those that aren't. We also realise that the property of roundness, common to all the round objects, has nothing to do with the other specific attributes of these objects, like the substance they are made of, their size, or their colour. We gradually separate the idea of 'roundness' from the many concrete things it is abstracted from. On the basis of the essential property of 'roundness', we develop the concept of a sphere. Once we have formed this concept, we don't need to think of a particular round object when we're talking of a sphere. We have successfully abstracted the concept from our concrete experiences.

In a similar way, we learn to abstract the concept of 'redness', say. But there's a major difference between this concept, and mathematical concepts. Firstly, every mathematical concept gives rise to more mathematical concepts. For example, related to the concept of a sphere we generate the concepts of radius, centre, surface area and volume of a sphere.

Secondly, we can think of various purely abstract and formal relationships between the related concepts. For instance, examine the relationship between a sphere and its volume. Irrespective of the size of a sphere or the material it is made of, the relationship is the same. The volume of a sphere depends on its radius in a certain way, regardless of how big or small the sphere is.

Thus, not only can we abstract a mathematical idea from concrete instances, we can also generate more related abstract ideas and study relationships between them in an abstract manner. These abstract mathematical ideas exist in our minds, independent of our concrete experiences that they grew out of. They can generate many more related abstract concepts and relationships amongst themselves. The edifice of ideas and relationships keeps growing, making our world of abstractions larger and larger.

You may like to think of another example of this aspect of the nature of mathematics.

E8) Would you say that the number system developed in this way? If so, how? Let us now consider another way in which mathematics grows.

This is closely related to what we have just been discussing.


Related Discussions:- Concrete to abstract-how mathematical ideas grow

Velocity of a particle, A particle moves along a straight line so that afte...

A particle moves along a straight line so that after t secs its distance from fixed point O on the line is given by s=(t-1)^2(t-2).find the distance from O when the velocity is zer

Fractions, what is equizilent to 2/5

what is equizilent to 2/5

Equivalent Fractions and Decimals, write each fraction as a decimal .round ...

write each fraction as a decimal .round to the nearest hundredth if necessary (1-4) (14-21)

Equation, how to slove problems on equations

how to slove problems on equations

Probability distribution for continuous random variables, Probability Distr...

Probability Distribution for Continuous Random Variables In a continuous distribution, the variable can take any value within a specified range, e.g. 2.21 or 1.64 compared to

Using substitution solving polynomial equations, Using Substitution Solving...

Using Substitution Solving Polynomial Equations ? Solve : (x 3 + 4) 2 - 15 (x 3 + 4) + 36 = 0. You might be tempted to multiply everything out and factor. However, there

Objective type , when is the trnscribing process of data preparation irrele...

when is the trnscribing process of data preparation irrelevant ? a)CAPI b) mall panel c) in home interview d) all of them

Linear equations, Linear Equations - Resolving and identifying linear fir...

Linear Equations - Resolving and identifying linear first order differential equations. Separable Equations - Resolving and identifying separable first order differential

Integral calculus, I need help to understand: fxx for f(x,y)=x^2+y^2-2xy

I need help to understand: fxx for f(x,y)=x^2+y^2-2xy

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd