First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

Permutation, HOW MANY number laying between 100 and 1000 can be formed with...

HOW MANY number laying between 100 and 1000 can be formed with 0,1,2,3,4,5 and also divisible by 5 with distinct digit

Help, how do I round a # and decimal

how do I round a # and decimal

Knowing your learner, Here, we have tried to present some of the different ...

Here, we have tried to present some of the different thinking and learning processes of preschool and primary school children, in the context of mathematics learning. We have speci

Trigonometry identity, if x+y+z=pi=180 prove that sin^2x+sin^2y+sin^z-2sinx...

if x+y+z=pi=180 prove that sin^2x+sin^2y+sin^z-2sinx*siny*sinz=2

Calculate the area of remaining piece of cardboard, A piece of cardboard in...

A piece of cardboard in the shape of a trapezium ABCD & AB || DE, ∠ BCD = 900, quarter circle BFEC is removed. Given AB = BC = 3.5 cm, DE = 2 cm. Calculate the area of remaining p

Coming to grips with mathematics, Coming To Grips With Mathematics :  How ...

Coming To Grips With Mathematics :  How does a child acquire mathematical concepts? Can any concept be presented to a child at any stage in such a manner that the child gets some

Calculate the volume and surface area of a cube, Calculate the volume and s...

Calculate the volume and surface area of a cube: Calculate the volume and surface area of a cube with a = 3".  Be sure to involved units in your answer. Solution: V =

Indeterminate forms, Indeterminate forms Limits we specified methods fo...

Indeterminate forms Limits we specified methods for dealing with the following limits. In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd