First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

Describe square roots, Describe Square Roots? When a number is written ...

Describe Square Roots? When a number is written inside a radical sign (√), the number is called the radicand, and we say that you are "taking the square root of" that number.

100 day countdown, subtract 20and 10,and then mutiply by 5

subtract 20and 10,and then mutiply by 5

Probability, A man enter a lucky draw that requires him to pick five differ...

A man enter a lucky draw that requires him to pick five different integers from 1 through 30 inclusive .he chooses his five number in such a way that the sum of their log base 10 i

Proportions Ratios, Give me an example , please : 1 over 2 , 14 over twenty...

Give me an example , please : 1 over 2 , 14 over twenty-eight

What was joe's approximate raw act score, Using the same mean and standard ...

Using the same mean and standard deviation from problem 10 (mean m = 20.1 and a standard deviation s = 5.8). Joe was informed that he scored at the 68 th percentile on the ACT, wh

Define number line, Q. Define Number Line? Ans. A number line is a...

Q. Define Number Line? Ans. A number line is a nice way to visualize and examine the ordering of the positive and negative numbers. Every positive and negative number that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd