The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Geometry, how can you tell qhich trangle is sss,asa, sas, and aas s

how can you tell qhich trangle is sss,asa, sas, and aas s

Shortricks, shortricks of compound interest

shortricks of compound interest

Trignometry, verify 4(sin^4 30^0+cos60^0 )-3(cos^2 ?45?^0-sin^2 90^0 )=2

verify 4(sin^4 30^0+cos60^0 )-3(cos^2 ?45?^0-sin^2 90^0 )=2

Duality., advanteges of duality

advanteges of duality

Calculate the probability, Let D = 1 denotes the event that an adult male h...

Let D = 1 denotes the event that an adult male has a particular disease. In the population, it is known that the probability of having this disease is 20 percent, i.e., Pr (D = 1)

Miss, how do you find the average of a number

how do you find the average of a number

Word problem, adison earned $25 mowing her neighbor''s lawn. then she loane...

adison earned $25 mowing her neighbor''s lawn. then she loaned her friend $18, and got $50 from her grandmother for her birthday. she now has $86. how much money did adison have to

Proper and improper fractions, Proper and Improper Fractions: Exampl...

Proper and Improper Fractions: Example: 3/8 proper fraction 8/3 improper fraction 3/3 improper fraction Here an improper fraction expressed as the sum of an in

Write down two more reasons why division is difficult, Write down two more ...

Write down two more reasons why children consider 'division' difficult. Regarding the first reason given above, one of fie few division related experiences that the child perhaps d

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd