The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Describe about arithmetic and geometric series, Describe about Arithmetic a...

Describe about Arithmetic and Geometric Series? When the terms of a sequence are added together instead of separated by commas, the sequence becomes a series. You will use seri

Formulas, how many formulas there for the (a-b)2

how many formulas there for the (a-b)2

Differential equation to determine initial value problem, Solve the subsequ...

Solve the subsequent IVP. cos(x) y' + sin(x) y = 2 cos 3 (x) sin(x) - 1 y(p/4) = 3√2, 0 Solution : Rewrite the differential equation to determine the coefficient of t

Math, 3 9/10 into decimal

3 9/10 into decimal

If 0.3 is added to 0.2 times the quantity x - 3, If 0.3 is added to 0.2 tim...

If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5. What is the value of x? The statement, "If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5,

Conic-section , How will you find the vertex of a parabola given in 2nd de...

How will you find the vertex of a parabola given in 2nd degree form (the axis of parabola is not parallel to coordinate axes)? Ans) Write the equation in type of standard form.

#title.automotive cruise control system., What are some of the interestingm...

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

Geometry, what is sin, cos, and tan?

what is sin, cos, and tan?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd