The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

one student is more in each row, The students of a class are made to stand...

The students of a class are made to stand in complete rows. If one student is more in each row, there would be 2 rows less, and if one student is less in every row, there would be

Probability - applications of integrals, Probability - Applications of inte...

Probability - Applications of integrals In this final application of integrals that we'll be looking at we are going to look at probability.  Previous to actually getting into

Hello, I am here to tell you, Alex has a cold.

I am here to tell you, Alex has a cold.

#titlefunction.., provide a real-world example or scenario that can be expr...

provide a real-world example or scenario that can be express as a relation that is not a function

Quanitive thinking for decision making, two Indiana state senate candidates...

two Indiana state senate candidates must decide which city to visit the day before the november election. The same four cities are available for both candidates. These cities are l

Evolve a game to help children remember basic multiplication, Evolve a game...

Evolve a game to help children remember basic multiplication facts. In this section we have looked at ways of helping children absorb some simple multiplication facts. But what

Illustrate Ionic solids, Ionic solids, which have anionic vacancies because...

Ionic solids, which have anionic vacancies because of metal excess defect develop colour. Illustrate with the help of a suitable example.

Area, #What is an easy way to find the area of any figure

#What is an easy way to find the area of any figure

Properties of dot product - proof, Properties of Dot Product - proof P...

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd