The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Algebra, let setM={X,2X,4X} for any numberX .if average (arthemetic mean)of...

let setM={X,2X,4X} for any numberX .if average (arthemetic mean)of the number in setM is 14.what is the value of X?

#Famous Numbers Exercise, Euler''s Constant (e) Approximate the number to t...

Euler''s Constant (e) Approximate the number to the one hundredth, one ten-thousandths, and one one-hundred-millionth.

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Sum, i want to trick to know how can i fastest calculate more than compute...

i want to trick to know how can i fastest calculate more than computer

Linear equation, The sum of the digit number is 7. If the digits are revers...

The sum of the digit number is 7. If the digits are reversed , the number formed is less than the original number. find the number

Estimate what percent of decrease for population, The population of Hamden ...

The population of Hamden was 350,000 in 1990. By 2000, the population had decreased to 329,000. What percent of decrease is this? First, ?nd out the number of residents who lef

Determine the tangent line to f ( x ) = 15 - 2x2 at x = 1, Determine the t...

Determine the tangent line to f ( x ) = 15 - 2x 2   at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li

Standardizing normal variables, Standardizing Normal Variables Suppose ...

Standardizing Normal Variables Suppose we have a normal population. We can represent it by a normal variable X. Further, we can convert any value of X into a corresponding valu

Unit normal vector - three dimensional space, Unit Normal Vector - Three Di...

Unit Normal Vector - Three Dimensional Space The unit normal vector is illustrated to be, N (t) = → T' (t) / (|| T → ' (t)||) The unit normal is orthogonal or normal or

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd