Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Given that
2t2 y′′ + ty′ - 3 y = 0
Show that this given solution are form a fundamental set of solutions for the differential equation?
Solution
The two solutions from that illustration are
y1(t) = t-1 y2(t) = t3/2
Let's calculate the Wronskian of these two solutions.
Therefore, the Wronskian will never be zero. Memorizes that we can't plug t = 0 in the Wronskian. It would be a problem in determining the constants in the general solution, except that we as well can't plug t = 0 in the solution either and thus this isn't the problem which it might appear to be.
So, as the Wronskian isn't zero for any t the two solutions form a fundamental set of solutions and the general solution is as
y(t) = c1t-1+ c2 t3/2as we claimed in that illustration.
To this point we're determined a set of solutions then we've claimed which they are actually a fundamental set of solutions. Certainly, you can now verify all those claims which we've made, though this does bring up a question.
In this case, the first point we have to remember is that we do not get a single value when we add two or more terms which are unlike in nature. This certainly ob
the sum of the vector QR, -SR, TQ and 2ST is?
Evaluate following limits. Solution In this case we also contain a 0/0 indeterminate form and if we were actually good at factoring we could factor the numerator & den
what effect is the constant in an equation have on an graph
In Daniel's fifth grade class, 37.5% of the 24 students walk to school. One third of the walkers got a ride to school presently from their parents. How many walkers got a ride to s
importance of lp
if 2 ballons cost 12 coins,use equivelent ratios to see how many coins 8 ballons would cost
Show that the radius of the circle,passing through the centre of the inscribed circle of a triangle and any two of the centres of the escribed circles,is equal to the diameter of t
-15divided by(-1_-4
Definition : A function f ( x ) is called differentiable at x = a if f ′ ( x ) exists & f ( x ) is called differentiable onto an interval if the derivative present for each of the
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd