Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The Definite Integral
If there exists an irregularly shaped curve, y = f(x) then there is no formula to find out the area under the curve between two points x = a and x = b on the horizontal axis. If this interval [a, b] is broken into 'n' subintervals [x1, x2], [x2, x3] ... [xn-1, xn] and rectangles are constructed in such a way that the height of each rectangle is equal to the smallest value of the function in the subinterval then the sum of the areas of the rectangles i.e. will approximate the actual area under the curve, where , is the difference between any two consecutive values of x. The smaller the value of the more rectangles can be created and the closer is the sum of the areas of the rectangles so formed, i.e. , to the actual area under the curve. If the number of subintervals increases, that is 'n' approaches infinity, each subinterval becomes infinitesmally small and the area under the curve can be expressed as
Figure 1
Figure 2
The area under the graph of a continuous function between two points on the horizontal axis, x = a and
x = b, can be best described by the definite integral of f(x) over the interval x = a to x = b. This is mathematically expressed as
a and b on the left hand side of the above expression are called the upper and lower limits of the integration. Unlike the indefinite integral which represents a family of functions as it includes an arbitrary constant, the definite integral is a real number which can be found out by using the =
Now we have to look at rational expressions. A rational expression is a fraction wherein the numerator and/or the denominator are polynomials. Here are some examples of rational e
Which expression below is equal to 5? The correct order of operations must be used here. PEMDAS tells you in which you should do the operations in the subsequent order: Pare
Volumes of Solids of Revolution / Method of Cylinders In the previous section we started looking at determine volumes of solids of revolution. In this section we took cross se
how to use big-m method
How do you add 7/9 + 6/8 + 3/4
Estimate the area between f ( x ) =x 3 - 5x 2 + 6 x + 5 and the x-axis by using n = 5 subintervals & all three cases above for the heights of each of the rectangle. Solution
use the bionomial theorem to expand x+2/(2-X)(WHOLE SQUARE 2)
which shows the rate 12 inches of rain in 6 hours as a unit rate
What are the key features of Greek Mathematics? How does the emphasis on proof affect the development of Greek Mathematics?
Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sinx-4sin 3 x
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd