The definite integral- area under a curve, Mathematics

Assignment Help:

The Definite Integral

Area under a Curve

If there exists an irregularly shaped curve, y = f(x) then there is no formula to find out the area under the curve between two points x = a and x = b on the horizontal axis. If this interval [a, b] is broken into 'n' subintervals [x1, x2], [x2, x3] ... [xn-1, xn] and rectangles are constructed in such a way that the height of each rectangle is equal to the smallest value of the function in the subinterval then the sum of the areas of the rectangles i.e.  158_area under the curve.png will approximate the actual area under the curve, where  642_area under the curve1.png , is the difference between any two consecutive values of x. The smaller the value of  642_area under the curve1.png the more rectangles can be created and the closer is the sum of the areas of the rectangles so formed, i.e.  158_area under the curve.png , to the actual area under the curve. If the number of subintervals increases, that is 'n' approaches infinity, each subinterval becomes infinitesmally small and the area under the curve can be expressed as

Area, C = 778_area under the curve2.png

Figure 1

435_area under the curve3.png

Figure 2

379_area under the curve4.png

The area under the graph of a continuous function between two points on the horizontal axis, x = a and

x = b, can be best described by the definite integral of f(x) over the interval x = a to x = b. This is mathematically expressed as

1832_area under the curve5.png 

a and b on the left hand side of the above expression are called the upper and lower limits of the integration. Unlike the indefinite integral which represents a family of functions as it includes an arbitrary constant, the definite integral is a real number which can be found out by using the  = 

fundamental theorem and is expressed as  1298_area under the curve6.png

Related Discussions:- The definite integral- area under a curve

Rational expressions, Now we have to look at rational expressions. A ration...

Now we have to look at rational expressions. A rational expression is a fraction wherein the numerator and/or the denominator are polynomials.  Here are some examples of rational e

Which expression below is equal to 5, Which expression below is equal to 5?...

Which expression below is equal to 5? The correct order of operations must be used here. PEMDAS tells you in which you should do the operations in the subsequent order: Pare

Volumes of solids of revolution -method of cylinders, Volumes of Solids of ...

Volumes of Solids of Revolution / Method of Cylinders In the previous section we started looking at determine volumes of solids of revolution.  In this section we took cross se

Fractions, How do you add 7/9 + 6/8 + 3/4

How do you add 7/9 + 6/8 + 3/4

Estimate the area between f ( x ) =x3 - 5x2 + 6 x + 5, Estimate the area be...

Estimate the area between f ( x ) =x 3 - 5x 2 + 6 x + 5 and the x-axis by using n = 5 subintervals & all three cases above for the heights of each of the rectangle. Solution

The bionomial theorem for rational index, use the bionomial theorem to expa...

use the bionomial theorem to expand x+2/(2-X)(WHOLE SQUARE 2)

Unit rates, which shows the rate 12 inches of rain in 6 hours as a unit rat...

which shows the rate 12 inches of rain in 6 hours as a unit rate

History of Mathematics, What are the key features of Greek Mathematics? How...

What are the key features of Greek Mathematics? How does the emphasis on proof affect the development of Greek Mathematics?

Trignometry, Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sin...

Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sinx-4sin 3 x

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd