Tangents with parametric equations - polar coordinates, Mathematics

Assignment Help:

Tangents with Parametric Equations

In this part we want to find out the tangent lines to the parametric equations given by

X= f (t)

Y = g (t)

To do this let's first remind how to find the tangent line to y = F(x) at x=a. now here the tangent line is illustrated by,

301_Tangents with Parametric Equations - polar coordinates.png

Now here, Note that if we could make out how to get the derivative dy/dx from the parametric equations we could just again use this formula as we will be capable to make use of the parametric equations to find out the x and y coordinates of the point.

Thus, just for a second let's assume that we were able to eliminate the parameter from the parametric form and write the parametric equations in the type y = F (x).

Now here, plug the parametric equations in for x and y. Yes, it look like silly to remove the parameter, after that immediately put it back in, but it's what we require to do to get our hands on the derivative. Doing this provides,

g (t) = F (f (t))  

Now, distinguish with respect to t and notice that we'll require to make use of the Chain Rule on the right hand side.

g' (t) = F' (f(t)) f' (t)

Let us do other change in notation.  We require to be careful along with our derivatives here. Lower case function's derivatives are regarding to t when derivatives of upper case functions are with respect to x.  Thus, to ensure that we keep this straight let's rewrite things like this.

dy/dt = F' (x) dx/dt

At this point we should recall ourselves just what we are after.  We required a formula for that is in words of the parametric formulas. 

Note: though that we can obtain that from the exceeding equation.

dy/dx = (dy/dt) / (dx/dt) ,         given dx/dt ≠ 0

Notice also that this will be a function of t and not x.


Related Discussions:- Tangents with parametric equations - polar coordinates

Geometry, the figure is a rectangle with angle y=60. Find angle x

the figure is a rectangle with angle y=60. Find angle x

If t2+t+1=0 , t=w,w 2 L.H.S (w+w 2 ) + (w 2 + w) 2 ........  1  + 1 ....

t=w,w 2 L.H.S (w+w 2 ) + (w 2 + w) 2 ........  1  + 1 ..... But every third term is of the form: (w 3n +w 3n ) 2 =22 There are nine such terms. Their sum is 36. The rema

Method of disks or the method of rings, Method of disks or the method of ri...

Method of disks or the method of rings One of the simple methods for getting the cross-sectional area is to cut the object perpendicular to the axis of rotation.  Carrying out

Ecercises, ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te...

ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te ndertoje nje kuboide me permasa 20cm,25cm,40cm. a mund ta realizoje kete, ne qofte se per prerjet dhe ngjitjet humb

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Demonstrates th...

Demonstrates that f ( x ) = 4 x 5 + x 3 + 7 x - 2 has accurately one real root. Solution From basic Algebra principles we know that since f (x) is a 5 th degree polynomi

Produce the individual answers and the insights in maths, It is difficult t...

It is difficult to produce the individual answers and the insights that they were providing. But, let's look at some broad patterns that we found, which are similar to those that o

Compute the derivative, Write an octave program that will take a set of poi...

Write an octave program that will take a set of points {x k , f k } representing a function and compute the derivative at the same points x k using 1. 2-point forward di erence

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd