Tangents with parametric equations - polar coordinates, Mathematics

Assignment Help:

Tangents with Parametric Equations

In this part we want to find out the tangent lines to the parametric equations given by

X= f (t)

Y = g (t)

To do this let's first remind how to find the tangent line to y = F(x) at x=a. now here the tangent line is illustrated by,

301_Tangents with Parametric Equations - polar coordinates.png

Now here, Note that if we could make out how to get the derivative dy/dx from the parametric equations we could just again use this formula as we will be capable to make use of the parametric equations to find out the x and y coordinates of the point.

Thus, just for a second let's assume that we were able to eliminate the parameter from the parametric form and write the parametric equations in the type y = F (x).

Now here, plug the parametric equations in for x and y. Yes, it look like silly to remove the parameter, after that immediately put it back in, but it's what we require to do to get our hands on the derivative. Doing this provides,

g (t) = F (f (t))  

Now, distinguish with respect to t and notice that we'll require to make use of the Chain Rule on the right hand side.

g' (t) = F' (f(t)) f' (t)

Let us do other change in notation.  We require to be careful along with our derivatives here. Lower case function's derivatives are regarding to t when derivatives of upper case functions are with respect to x.  Thus, to ensure that we keep this straight let's rewrite things like this.

dy/dt = F' (x) dx/dt

At this point we should recall ourselves just what we are after.  We required a formula for that is in words of the parametric formulas. 

Note: though that we can obtain that from the exceeding equation.

dy/dx = (dy/dt) / (dx/dt) ,         given dx/dt ≠ 0

Notice also that this will be a function of t and not x.


Related Discussions:- Tangents with parametric equations - polar coordinates

What is universal set, A non-empty set or group of which all the sets under...

A non-empty set or group of which all the sets under concern are subsets is known as the universal set. In any part of application of set theory, all the sets under concern might l

How to subtract fractions involving negative numbers, Q. How to Subtract fr...

Q. How to Subtract fractions involving negative numbers? Ans. This is the same as adding them, but just remember the rule that two negatives on the same fraction cancel ou

Solid Mensuration, The two sides of a triangle are 17 cm and 28 cm long, an...

The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to

Geometry, how much congruent sides does a trapezoid have

how much congruent sides does a trapezoid have

Divides a given line-segment externally in the ratio of 1:2, Divides a give...

Divides a given line-segment externally in the ratio of 1:2 Construction: i )Draw BX making an actueangle at B. ii) Starting from B, mark 2 equal points on BX as shown in the f

Objectives of ones tens and more, Objectives After studying this unit, ...

Objectives After studying this unit, you should be able to 1.  evolve and use alternative activities to clarify the learner's conceptual 2.  understanding of ones/tens/hu

What is equivalence relation, What is equivalence relation?  Prove that rel...

What is equivalence relation?  Prove that relation  'congruence modulo' (  ≡mod m) is an equivalence relation.  Ans: A relation R illustrated on a nonempty set A is said to be

Find the distance of the bird from the girl, A boy standing on a horizontal...

A boy standing on a horizontal plane finds a bird flying at a distance of 100m from him at an elevation of 300. A girl standing on the roof of 20 meter high building finds the angl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd