Systems of differential equations, Mathematics

Assignment Help:

For this point we've only looked as solving particular differential equations. Though, many "real life" situations are governed through a system of differential equations. See the population problems which we looked at back in the modeling section of the first order differential equations section. In such problems we considered only at a population of one species, even the problem also comprised some information about predators of the species.  We supposed that any predation would be constant under these cases. Though, in most cases the level of predation would also be based upon the population of the predator. Therefore, to be more realistic we must also have a second differential equation which would provide the population of the predators. As well as note the population of the predator would be, in similar way, dependent upon the population of the prey suitably. Conversely, we would require knowing something about one population to get the other population. So to get the population of either the prey or the predator we would require solving a system of at least two differential equations.

The subsequent topic of discussion is afterward how to solve systems of differential equations. Though, before doing this we will first require doing a quick review of Linear Algebra. A lot of what we will be doing in this section will be dependent upon topics from linear algebra. Well this review is not intended to wholly teach you the subject of linear algebra, since that is a topic for a whole class. The rapid review is intended to find you familiar sufficient with some of the basic topics which you will be capable to do the work required once we find around to solving systems of differential equations.


Related Discussions:- Systems of differential equations

How much did sally earn if she worked 48 hours, Sally gets paid x dollars p...

Sally gets paid x dollars per hour for a 40-hour work week and y dollars for every hour she works over 40 hours. How much did Sally earn if she worked 48 hours? Since she worke

Numeric patterns, Kelli calls her grandmother every month Kelli also calls ...

Kelli calls her grandmother every month Kelli also calls her cousin.If Kelli calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by t

Find the common difference of an ap, Find the common difference of an AP wh...

Find the common difference of an AP whose first term is 100 and sum of whose first 6 terms is 5 times the sum of next 6 terms. Ans:    a = 100 APQ a 1 + a 2 + ....... a 6

Simplify the boolean function, Simplify the Boolean function: F...

Simplify the Boolean function: F (w,x,y,z) = ∑ (0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 14)  (8)  Ans:   f(w, x, y, z) = ∑(0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 14) The above

Discontinuous integrand- integration techniques, Discontinuous Integrand- I...

Discontinuous Integrand- Integration Techniques Here now we need to look at the second type of improper integrals that we will be looking at in this section.  These are integr

Iti, Gm signal is better than am signal becuase

Gm signal is better than am signal becuase

Determine the angle of depression to a ship, From the top of a 200 m lighth...

From the top of a 200 m lighthouse, the angle of depression to a ship in the ocean is 23 . How far is the ship form the base of the lighthouse?

Identify the children strategies to solve maths problems, Here are four pro...

Here are four problems. Four children solved one problem each, as given below. Identify the strategies the children have used while solving them. a) 8 + 6 = 8 + 2 + 4 = 14 b)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd