Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Warnock's Algorithm
An interesting approach to the hidden-surface problem was presented by Warnock. His method does not try to decide exactly what is happening in the scene but rather just tries to get the display right. As the resolution of the display increases, the amount of work which the algorithm must do to get the scene right also increases, (this is also true for scan-line algorithms). The algorithm divides the screen up into sample areas. In some sample areas it will be easy to decide what to do. If there are no faces within the area, then it is left blank. If the nearest polygon completely covers it, then it can be filled in with the colour of that polygon. If neither of these conditions holds, then the algorithm subdivides the sample area into smaller sample areas and considers each of them in turn. This process is repeated as needed. It stops when the sample area satisfies one of the two simple cases or when the sample area is only a single pixel (which can be given the colour of the foremost polygon). The process can also be allowed to continue to half or quarter pixel-sized sample areas, whose colour may be average over a pixel to provide antialiasing.
The test for whether a polygon surrounds or is disjoint from the sample area is much like a clipping test to see if the polygon sides cross the sample-area boundaries. Actually the minimax test can be employed to identify many of the disjoint polygons. A simple test for whether a polygon is in front of another is a comparison of the z coordinates of the polygon planes at the corners of the sample area. At each subdivision, information learned in the previous test can be used to simplify the problem. Polygons which are disjoint from the tested sample area will also be disjoint from all of the sub-areas and do not need further testing. Likewise, a polygon which surrounds the sample area will also surround the sub-areas.
B i n a ry Search Algorithm is given as follows 1. if (low > high) 2. return (-1) 3. mid = (low +high)/2; 4. if ( X = = a [mid]) 5. return (mid); 6.
An AVL tree is a binary search tree that has the given properties: The sub-tree of each of the node differs in height through at most one. Each sub tree will be an AVL tre
Implementing abstract data types A course in data structures and algorithms is hence a course in implementing abstract data types. It may seem that we are paying a lot of atten
loops
extra key inserted at end of array is called
boundary tag system in data structure?
Determine the Disjoint of division method A polygon is disjoint from the viewport if the x- and y-extents of the polygon do not overlap the viewport anywhere. In this case; reg
implementation of fast fourier transforms for non power of 2
Searching is the procedure of looking for something: Finding one piece of data that has been stored inside a whole group of data. It is frequently the most time-consuming part of m
Acyclic Graphs In a directed graph a path is said to form a cycle is there exists a path (A,B,C,.....P) such that A = P. A graph is called acyclic graph if there is no cycle in
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd