Standard interpretations to derivatives, Mathematics

Assignment Help:

Standard interpretations to derivatives

Example   Assume that the amount of money in a bank account is specified by

                                      P (t ) = 500 + 100 cos (t ) -150 sin (t )

where t refer to in years.  During the first 10 years in which the account is open while is the amount of money in the account increasing?

Solution: To find out when the amount of money is increasing we have to determine while the rate of change is positive.  As we know that the rate of change is specified by the derivative that is the first thing that we have to find.

                                         P′ (t) = -100 sin (t) -150 cos (t)

Now, we have to find out where in the first 10 years it will be positive. It is equivalent to asking where in the interval [0, 10] the derivative is positive.  Recall that both sine & cosine are continuous functions and hence the derivative is also continuous function. Then the Intermediate Value Theorem tells us that the derivative can only change sign if it first goes through zero.

Therefore, we ought to solve the following equation.

-100 sin (t) -150 cos (t) = 0

100 sin (t) = -150 cos (t)

sin (t ) /cos (t ) = -1.5

tan (t ) = -1.5

The solution to this equation is,

t = 2.1588 +2 ? n,                                n = 0, ±1, ±2,........

t = 5.3004 + 2 ? n,                               n = 0, ±1, ±2,......

 

If you don't recall how to solve out trig equations go back & take a look at the sections on solving out trig equations in the Review chapter.

Only we are interested in those solutions which fall in the range [0, 10].  Plugging in values of n into the solutions above we see that the values we require are,

t = 2.1588

t =5.3004            t =2.1588 +2 ? =8.4420

1121_trig function8.png

Thus, much like solving polynomial inequalities all that we have to do is sketch in a number line and adds in these points. These points will divide number line into regions where in the derivative have to always be the similar sign.  All that we have to do then is select a test point from each of the region to find out the sign of the derivative in that region.

Following is the number line along with all the information on it.

Thus, it looks as the amount of money in the bank account will be increasing at the time of following intervals.

2.1588 < t < 5.3004    8.4420 < t < 10

Note as well that we can't say anything about what is happening after t = 10 as we haven't done any work for t's after that point.


Related Discussions:- Standard interpretations to derivatives

Example of linear in - equation - linear algebra, Explain some Examples of ...

Explain some Examples of linear in - Equation, with solution.

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Prove which divide these sides in the ratio 2: 1, In a right triangle ABC, ...

In a right triangle ABC, right angled at C, P and Q are points of the sides CA and CB respectively, which divide these sides in the ratio 2: 1. Prove that  9AQ 2 = 9AC 2 +4BC 2

Miss, how do you find the average of a number

how do you find the average of a number

Solve the form ax2 - bx - c factoring polynomials, Solve the form ax 2 - b...

Solve the form ax 2 - bx - c factoring polynomials ? This tutorial will help you factor quadratics that look something like this: 2x 2 -3x - 14 (Leading coefficient is

Rewriting percent expressions, i have trouble going through problem in this...

i have trouble going through problem in this lesson. Markdown and Markups are theh ones im stuck in

Solid Mensuration, The two sides of a triangle are 17cm and 28cm long, and ...

The two sides of a triangle are 17cm and 28cm long, and the length of the median drawn to the third side is equal to 19.5 cm. What is the distance from an endpoint of the median to

What is the limit of sin (1/x) when x tends to zero?, As x tends to zero th...

As x tends to zero the value of 1/x tends to either ∞ or -∞. In this situation we will not be sure about the exact value of 1/x. As a result we will not be sure about the exact/app

Linda bought 35 yards of fencing how much did she spend, Linda bought 35 ya...

Linda bought 35 yards of fencing at $4.88 a yard. How much did she spend? To multiply decimals, multiply generally, count the number of decimal places in the problem, then us

Application of linear function, four times an unknown number is equal to tw...

four times an unknown number is equal to twice the sum of five and that unknown number

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd