Spherical coordinates - three dimensional space, Mathematics

Assignment Help:

Spherical Coordinates - Three Dimensional Space

In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's possibly easiest to start things off along with a diagram.

1616_Spherical Coordinates - Three Dimensional Space.png

Spherical coordinates contains the following three quantities.

1st there is ρ.  This is the distance from the origin to the point and we will need ρ ≥ 0 . After that there is θ.  This is similar angle that we saw in polar/cylindrical coordinates.  It is the angle in between the positive x-axis and the line above represented by r (that is as well the same r as in polar or cylindrical coordinates). There are not any type of restrictions on θ.

At last there is Φ.  This is the angle in between the positive z-axis and the line from the origin to the point. We will need 0 ≤ Φ ≤ Π.

In brief, ρ is the distance from the origin to the point, Φ is the angle which we require to rotate down from the positive z-axis to obtain to the point and θ is how much we require to rotate around the z-axis to get to the point.

We should first derive a few conversion formulas. Let's first start along with a point in spherical coordinates and ask over what the cylindrical coordinates of the point are. Thus, we know (ρ, θ, Φ)and wish to find ( r, θ, z).  Actually, we really only require to find r and z since θ is similar in both coordinate systems.

We will be capable to do all of our work by looking at the right triangle displayed above in our sketch. Along with a little geometry we see that the angle in between z and ρ is Φ and thus we can see that, z = ρ cos Φ

r = ρ sin Φ

and these are just the formulas that we were looking for. Thus, given a point in spherical coordinates the cylindrical coordinates of the point will be,

r = ρ sin Φ

θ = θ

z = ρ cos Φ

Notice: as well that,

Or,

r2 + z2 = ρ2 cos2 Φ + ρ2 sin2 Φ = ρ2 (cos2 Φ + sin2 Φ) = ρ2

or

ρ2 = r2 + z2


Related Discussions:- Spherical coordinates - three dimensional space

Frequency polygon, how to compute the frequncy polygon of the scores?

how to compute the frequncy polygon of the scores?

Equal groupings -categories of multiplication, Equal groupings - when we...

Equal groupings - when we want to find how many objects there are in several equal-sized sets. (e.g., if there are 3 baskets, each with 4 bananas, 4 oranges and 4 apples, respec

Area of polygons, ho we can find the area of diffrent types of polygon

ho we can find the area of diffrent types of polygon

Definition of inverse functions, Definition of inverse functions :  Given...

Definition of inverse functions :  Given two one-to-one functions f ( x ) and g ( x ) if ( f o g ) ( x ) = x  AND  ( g o f ) ( x ) = x then we say that f ( x ) & g ( x ) are i

If oa = ob = 14cm, If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded r...

If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded region.  (Ans:21cm 2 ) Ans:    Area of the shaded region = Area of ? AOB - Area of Semi Circle = 1/2  x 14 x

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xe^x} as its fundamental set

Launching of a new product, Launching a new product (Blackberry Cube) Analy...

Launching a new product (Blackberry Cube) Analysis (target market) Product features Promotions and advertisement sample design (location)

Find out the greater of two consecutive positive is 143, Find out the great...

Find out the greater of two consecutive positive odd integers whose product is 143. Let x = the lesser odd integer and let x + 2 = the greater odd integer. Because product is a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd