Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Sound Waves in Gases
Sound waves are longitudinal pressure waves. Let us consider the motion of a plane sound wave moving along X-axis in a gas medium. In undisturbed position, the gas medium is described by its equilibrium pressure P0 and density ρ0. A mechanical disturbance deforms the equilibrium state of the gas. The gas particles are displaced longitudinally causing compressions and rarefactions. Consequently, the density and pressure of the gas changes. The pressure variation moves in the medium from one region to the other producing a pressure wave.
To obtain the wave equation, we consider the motion of a thin slab of the gas (of unit area), lying between position x and x + Δ x. Following the steps exactly as in the elastic rod, the average volume strain of this element of gas is given by The volume strain is produced because the pressures along the X-axis on both sides of the thin element are different. The net pressure or stress on the gas element, within linear approximation, towards +ve X-axis is Now (instead of Young's modulus), the elastic property of gas is defined in terms of its bulk modulus K as The minus sign in the definition of K appears because volume strain is negative for positive stress. That is, bulk modulus K is determined about equilibrium condition. Hence the net force on the gas element is The equation of motion of the gas element (mass = ρ0 Δ x), therefore, is Hence, the velocity of sound waves in a gaseous medium depends upon the equilibrium density ρ0 and bulk modulus K of the gas. Note that bulk modulus K is also evaluated at equilibrium condition The value of K therefore depends on how pressure of the gas changes with respect to volume during wave motion. It turns out that the temperature in a sound wave does not remain constant. The excess pressure causing the compression raises the temperature of gas there; the region of rarefaction cools slightly as the pressure falls. The time period of oscillation is so small that before heat could flow from one region to another, the region of compression turns into region of rarefaction and vice-versa. The sound motion therefore is an adiabatic process and gas obeys the equation.
Q. Hazardous and Safe Areas in plant layout? Plants implicitly involve identifiable hazards in respect to the environment, location and presence of potentially explosive materi
Do not round intermediate calculations; however for display purposes report intermediate steps rounded to four significant figures. Give your final answer(s) to three significant f
PROJECTS
bending stress diagram
Concept of process - Thermodynamics: A process can be defined as change in the state or condition of a substance or working medium. For instance, heating or cooling of thermod
Application of dynamic emf
Oil Gun: This is used to supply fluid oil to chassis lubrication (Figure). Figure : Oil Gun
Q. Define Carbon steel? At ambient temperatures and under dry conditions, caustic is not particularly corrosive and can be handled in carbon steel. However, stress corrosion c
explain
how to prove heat is a path function?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd