Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Sound Waves in Gases
Sound waves are longitudinal pressure waves. Let us consider the motion of a plane sound wave moving along X-axis in a gas medium. In undisturbed position, the gas medium is described by its equilibrium pressure P0 and density ρ0. A mechanical disturbance deforms the equilibrium state of the gas. The gas particles are displaced longitudinally causing compressions and rarefactions. Consequently, the density and pressure of the gas changes. The pressure variation moves in the medium from one region to the other producing a pressure wave.
To obtain the wave equation, we consider the motion of a thin slab of the gas (of unit area), lying between position x and x + Δ x. Following the steps exactly as in the elastic rod, the average volume strain of this element of gas is given by The volume strain is produced because the pressures along the X-axis on both sides of the thin element are different. The net pressure or stress on the gas element, within linear approximation, towards +ve X-axis is Now (instead of Young's modulus), the elastic property of gas is defined in terms of its bulk modulus K as The minus sign in the definition of K appears because volume strain is negative for positive stress. That is, bulk modulus K is determined about equilibrium condition. Hence the net force on the gas element is The equation of motion of the gas element (mass = ρ0 Δ x), therefore, is Hence, the velocity of sound waves in a gaseous medium depends upon the equilibrium density ρ0 and bulk modulus K of the gas. Note that bulk modulus K is also evaluated at equilibrium condition The value of K therefore depends on how pressure of the gas changes with respect to volume during wave motion. It turns out that the temperature in a sound wave does not remain constant. The excess pressure causing the compression raises the temperature of gas there; the region of rarefaction cools slightly as the pressure falls. The time period of oscillation is so small that before heat could flow from one region to another, the region of compression turns into region of rarefaction and vice-versa. The sound motion therefore is an adiabatic process and gas obeys the equation.
a) What is Interference and show the relation for the minimum number of teeth required for a wheel. b) Show the relations for Maximum length of path of contact and Maximum lengt
a) Describe and illustrate the terms with their classification: Mechanism, Kinematic, Machine links and Kinematic pair. b) Discuss the Inversions of double slider crank chain an
what is the advantage of fan
have assignment in FEM calculation and ANSYS are you able to solve this kind of assignment
Discover the angle of twist: Discover the diameter of the shaft needed to transmit 60 kW at 150 r.p.m., if the maximum torque is possible to exceed the mean torque by 25% for
Find out Deflection under the load: A beam of span 4 m is subject to a point load of 20 kN at 1 m from the left support and a Udl of 10 kN/m over a length of 2 m from the righ
how is varignons theorem useful in engineering mechanics
Calculate the vertical deflection: Calculate the vertical deflection at the tip of the cantilever shown in Figure Figure Solution Measuring the distance x f
find degree of the bezier curve
Calculate value of force: A 100N force that makes an angle of 45º with the horizontal x axis is to be replaced by the two forces, a horizontal force F and a second force
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd