Solving trig equations, Mathematics

Assignment Help:

Solving Trig Equations: Here we will discuss on solving trig equations. It is something which you will be asked to do on a fairly regular basis in my class.

Let's just see the examples to how to solve trig equations.

Example Solve 2 cos (t ) = √3 .

Solution

There's actually not a whole lot to do in solving this sort of trig equation.  All we have to do is divide both of the sides by 2 and the go to the unit circle.

2 cos (t ) =       √3

cos (t ) =          √3/2

hence, we are looking for all the values of t for which cosine will contain the value of √3/2 .  hence, let's take a look at the given unit circle.

607_trig equations.png

From quick inspection we can see that t = ?/6   is a solution.   There is another angle which will also be a solution.  We have to determine what this angle is. While we look for these angles typically we desire positive angles which lie between 0 and 2 ? . This angle will not be the just possibility certainly, however by convention typically we look for angles that meet these conditions.

To determine this angle for this problem all we have to do is use a little geometry.  The angle in the first quadrant makes an angle of ?/6 with the +ve x-axis, then hence must the angle in the fourth quadrant. Thus we could use - ?/6    , since again, it's more common to use positive angles thus, we'll use t = 2 ? - ?/6 = 11?/6

We aren't done along with this problem.  As the discussion regarding finding the second angle has illustrates there are several ways to write any given angle onto the unit circle.  Sometimes this will be - ?/6 that we desire for the solution & sometimes we will desire both (or neither) of the listed angles. Thus, as there isn't anything in this problem (contrast this along with the next problem) to tell us that is the correct solution we will have to list all possible solutions.

It is extremely easy to do.  Recall from the previous section and you'll illustrates there that I used

                                 ?/6  + 2 ? n  , n  =0, ± 1, ± 2, ± 3,.............

to show all the possible angles which can end at the similar location on the unit circle, i.e. angles that end at ?/6   .  Recall that all this says is that we begin at ?/6  then rotate around in the counter-clockwise direction (n is +ve) or clockwise direction (n is -ve) for n complete rotations. The similar thing can be done for the second solution.

Thus, all together the complete solution to this problem is following

                   ?/6  + 2 ? n  , n  =0, ± 1, ± 2, ± 3,.............

                  11?/6  + 2 ? n  , n  =0, ± 1, ± 2, ± 3,.............

As a last thought, notice that we can get - ?/6 by using n = -1 in the second solution.


Related Discussions:- Solving trig equations

Application of interpolation and extrapolation, Application Interpolati...

Application Interpolation and extrapolation are widely used by businessmen, administrators, sociologists, economists and financial analysts. While interpolation hel

How to converting percents to fractions, How to Converting Percents to Frac...

How to Converting Percents to Fractions ? To convert a percent to a fraction: 1. Remove the percent sign. 2. Create a fraction, in which the resulting number from Step 1 is

Vectors, A 10 m ladder of 150N is placed at an angle 30degrees to a smooth ...

A 10 m ladder of 150N is placed at an angle 30degrees to a smooth wall at point A and the other end (point B) on the ground. Assume that the weight of the ladder acts at its mid po

Powerball odds., I need to know how to get the power ball odds. the first o...

I need to know how to get the power ball odds. the first one 5 out of 59 plus 1 out of 35 I got .I did combination formula and it came out right. how do you get 5 out 0f 59 and get

Determine the measure of angle, Using the expample provided below, if m∠ABE...

Using the expample provided below, if m∠ABE = 4x + 5 and m∠CBD = 7x - 10, Determine the measure of ∠ABE. a. 155° b. 73° c. 107° d. 25° d. ∠CBD and ∠ABE are vert

Prove which divide these sides in the ratio 2: 1, In a right triangle ABC, ...

In a right triangle ABC, right angled at C, P and Q are points of the sides CA and CB respectively, which divide these sides in the ratio 2: 1. Prove that  9AQ 2 = 9AC 2 +4BC 2

Example of line - common polar coordinate graphs, Example of line - Common ...

Example of line - Common Polar Coordinate Graphs Example:  Graph θ = 3Π, r cos θ = 4 and r sin θ = -3 on similar axis system. Solution There actually isn't too much to

Explain that odd positive integer to be a perfect square, Show that for odd...

Show that for odd positive integer to be a perfect square, it should be of the form 8k +1. Let a=2m+1 Ans: Squaring both sides we get a2 = 4m (m +1) + 1 ∴ product of two

Inverse functions, Inverse Functions : In the last instance from the pr...

Inverse Functions : In the last instance from the previous section we looked at the two functions   f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that ( f o g ) ( x )

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd