Solve 6 sin ( x/2)= 1 on [-20,30], Mathematics

Assignment Help:

Solve 6 sin ( x/2)= 1 on [-20,30]

Solution

Let's first work out calculator of the way since that isn't where the difference comes into play.

sin( x/2)= 1/6   ⇒x/2= sin -1( 1/6)= 0.1674

Here's a unit circle for this instance.

246_circle29.png

To determine the second angle in this case we can notice that the line in the first quadrant makes an angle of 0.1674 with the +ve x-axis and hence the angle in the second quadrant will then make an angle of 0.1674 with the -ve x-axis and hence the angle that we're after is then,

π - 0.1674 =2.9742 .

Here's the rest of the solution for this instance.  We're going to assume from this point on that you can do this work without much explanation.

x/2= 0.1674  + 2π n  ⇒         x = 0.3348 + 4π n          n= 0, ±1, ±2,.......

x/2= 2.9742 ± 2π nx = 5.9484 ± 4π n

n= -2 :x =  -24.7980 and   -19.1844

n = -1 :x = -12.2316  and  -6.6180

n = 0    : x = 0.3348    and      5.9484

n = 1    : x =12.9012    and      18.5148

n = 2    :x = 25.4676   and      31.0812

The solutions to this equation are then,

 x = -19.1844, -12.2316, - 6.6180, 0.3348, 5.9484, 12.9012, 18.5128, 25.4676

Note that in the previous instance we only got a single solution. It happens on occasion thus don't get worried regarding it. Also, note that it was the second angle which gave this solution and hence if we'd just relied on our calculator without worrying regarding other angles we would not have gotten this solution.  Again, it can't be stressed sufficient that whereas calculators are a great tool if we don't understand how to properly interpret/use the result we can (and frequently will) get the solution wrong.

To this point we've only worked examples including sine & cosine. Nowlet's work a couple of instance that involves other trig functions to see how they work.


Related Discussions:- Solve 6 sin ( x/2)= 1 on [-20,30]

Direction fields in newtons law, One of the simplest physical situations to...

One of the simplest physical situations to imagine of is a falling object. Thus let's consider a falling object along with mass m and derive a differential equation as, when resolv

Apply depth-first-search to find out the spanning tree, Apply depth-first-s...

Apply depth-first-search to find out the spanning tree for the subsequent graph with vertex d as the starting vertex.        Ans: Let us begin with node'd'. Mark d as vi

Chapter problem temperature around the globe.., predict whether there is a ...

predict whether there is a relationship between the mean January temperatures of a city in North America and the city''s position west of the prime meridian.

Statistical models in simulation, Players and spectators enter a ballpark a...

Players and spectators enter a ballpark according to independent Poisson processes having respective rates 5 and 20 per hour. Starting at an arbitrary time, compute the probability

Find the total volume of the hay stack, The lower portion of a hay stack is...

The lower portion of a hay stack is an inverted cone frustum and the upper part is a cone find the total volume of the hay stack.

Problem solving, compare 643,251;633,512; and 633,893. The answer is 633,51...

compare 643,251;633,512; and 633,893. The answer is 633,512

Multiple integrals, how to convert multiple integral into polar form and ch...

how to convert multiple integral into polar form and change the limits of itegration

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd