Single point perspective transformation, Computer Graphics

Assignment Help:

Single Point Perspective Transformation - Viewing Transformations

In order to derive the particular point perspective transformations beside the x and y-axes, we construct figures (19) and (20) as the same to the Figure 18, although with the consequent COP's at E(-d,0,0) and E(0,-d,0) on the -ive x and y-axes respectively.

131_Single Point Perspective Transformation.png

The parametric equation of an l i.e. line EP, starting by E and passing through P is:

E+t(P-E)  0

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]

=(-d,0,0)+t[x+d,y,z]

=[-d+t.(x+d), t.y, t.z]

Point P' is acquired, while t=t*

There is, P'=(x',y',z') =[-d+t*.(x+d), t*.y, t*.z]

Because, P' lies on X=0 plane shows -d+t*.(x+d)=0 must be true, which is t*=d/(x+d) is actual.

 

Hence, x'=-d+t*(x+d)=0

         y'=t*.y=y.d/(x+d)

         z'=t*.z=z.d/(x+d)

Hence P'=( 0, y.d/(z+d), z.d/(x+d))

          = (0,y/((z/d)+1), z/((x/d)+1))

In terms of Homogeneous coordinate system as P'=(0,y,z,(x/d)+1). The above equation can become in matrix form that is:388_Single Point Perspective Transformation 2.png

=[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5)

is, P'h = Ph.Pper,x  --------------------------------(6)

Here Pper,z    in equation (5) implies the particular point perspective transformation w.r.t. x-axis.

Thus, the ordinary coordinates projected point P' of a agreed point P of a particular point perspective transformation with respect to the x-axis as:

(x', y',z',1)= [0,y/((z/d)+1), z/((x/d)+1),1] which has a center of projection at [-d,0,0,1] and a vanishing point assigned on the x-axis at [0,0,0,1]

As the same, the particular point perspective transformation w.r.t. y-axis is consequently:

687_Single Point Perspective Transformation 3.png

=[x/((y/d)+1),0, z/((y/d)+1),1] That is, P'h = Ph.Pper,y  -----------------------------(7)

Here Pper,y  in equation (5) implies the particular point perspective transformation w.r.t. y-axis.

Hence, the ordinary coordinates as projected point P' of a given point P of a particular point perspective transformation w.r.t. y-axis that is:

(x',y',z',1)=[x/((y/d)+1),0, z/((y/d)+1),1] which has a center of projection at [0,-d,0,1] and a vanishing point assigned on the y-axis at [0,0,0,1].


Related Discussions:- Single point perspective transformation

General perspective transformation, General Perspective transformation w.r....

General Perspective transformation w.r.t. an arbitrary center of projection Suppose here that the COP is at C(a,b,c), as demonstrated in Figure. By Figure, the vectors CP

Polygon representation methods - boundary representations, Polygon represen...

Polygon representation methods - Boundary representations Boundary representations: now the 3-D object is shown as a set of surfaces which separate the object interior from

Entertainment - applications for computer animation, Entertainment - Applic...

Entertainment - Applications For Computer Animation Advertising, Games, Film, Video, Television, Multimedia are various of the entertainment fields wherein computer animation h

Computer aided design and computer aided manufacturing, The development of ...

The development of CAD had little consequence on CNC initially because of the various abilities and file formats used through drawing and machining programs. Conversely, as Compute

Design the poster taking, Question : (a) With the help of illustrations...

Question : (a) With the help of illustrations, briefly describe the influence of the following style on layout and typographic design: (i) Bauhaus (ii) Avant Garde (iii)

Transformation, Define transformation. Explain all basic transformation

Define transformation. Explain all basic transformation

Reflection about a line - 2-d and 3-d transformations, Reflection about a L...

Reflection about a Line - 2-D and 3-D Transformations Reflection is a transformation that produces the mirror image of an object. Since we discussed that the mirror reflection

Transformation for 3-d shearing, Transformation for 3-D Shearing 2-dim...

Transformation for 3-D Shearing 2-dimensional xy-shearing transformation, as explained in equation, can also be simply extended to 3-dimensional case. All coordinates are tran

Transformation for parallel projection, Transformation for parallel project...

Transformation for parallel projection Parallel projections is also termed as Orthographic projection, are projections into one of the coordinate planes as x = 0, y = 0 or z

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd