Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Internal sorting, In internal sorting, all of the data to be sorted is obta...

In internal sorting, all of the data to be sorted is obtainable in the high speed main memory of the computer. We will learn the methods of internal sorting which are following:

Merging, merging 4 sorted files containing 50 10 25 and 15 records will tak...

merging 4 sorted files containing 50 10 25 and 15 records will take time

What do you understand by tree traversal, What do you understand by tree tr...

What do you understand by tree traversal? The algorithm walks by the tree data structure and performs some computation at everynode in the tree. This process of walking by the

Dynamic memory management, How memory is freed using Boundary tag method in...

How memory is freed using Boundary tag method in the context of Dynamic memory management? Boundary Tag Method to free Memory To delete an arbitrary block from the free li

Operations on b-trees, Operations on B-Trees Given are various operatio...

Operations on B-Trees Given are various operations which can be performed on B-Trees: Search Create Insert B-Tree does effort to minimize disk access and t

Depth-First Traversal, With the help of a program and a numerical example e...

With the help of a program and a numerical example explain the Depth First Traversal of a tree.

Binary search trees, A Binary Search Tree is binary tree which is either em...

A Binary Search Tree is binary tree which is either empty or a node having a key value, left child & right child. By analyzing the above definition, we notice that BST comes int

Test whether a binary tree is a binary search tree, Q. Write down an algori...

Q. Write down an algorithm to test whether a Binary Tree is a Binary Search Tree.              A n s . The algorithm to check whether a Binary tree is as Binary Search

Threads in main method, Create main method or a test class that creates 2 E...

Create main method or a test class that creates 2 Element objects that are neighbours of each other, the first element temperature set at 100, the 2nd at 0 and use an appropriate h

Algorithm to delete the specific node from binary searchtree, Q. Write down...

Q. Write down an algorithm to delete the specific node from binary search tree. Trace the algorithm to delete a node (10) from the following given tree. Ans. Algor

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd