Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Discuss the properties of adt, Question 1 Write a program in 'C' to rea...

Question 1 Write a program in 'C' to read N numbers and print them in descending order Question 2 Discuss the properties of ADT Question 3 Write a note on

Explain thread, Thread By changing the NULL lines in a binary tree to ...

Thread By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using either a stack

High-level and bubble algorithm , 1. Give both a high-level algorithm and a...

1. Give both a high-level algorithm and an implementation (\bubble diagram") of a Turing machine for the language in Exercise 3.8 (b) on page 160. Use the ' notation to show the co

..#title, whate is meant by the term heuristic

whate is meant by the term heuristic

B-tree, Unlike a binary-tree, each node of a B-tree may have a number of ke...

Unlike a binary-tree, each node of a B-tree may have a number of keys and children. The keys are stored or saved in non-decreasing order. Each key has an related child that is the

How can a lock object be called in the transaction, How can a lock object b...

How can a lock object be called in the transaction? By calling Enqueue and Dequeue in the transaction.

Program to manipulate the data structure, Data Structure and Methods: ...

Data Structure and Methods: Build an array structure to accomodate at least 10 elements. Provide routines for the following: An initializer. A routine to populate (

Graph, multilist representation of graph

multilist representation of graph

Definition of algorithm, Definition of Algorithm Algorithm must have th...

Definition of Algorithm Algorithm must have the following five characteristic features: 1.      Input 2.      Output 3.      Definiteness 4.      Effectiveness 5

Which sorting methods sorting a list which is almost sorted, Which sorting ...

Which sorting methods would be most suitable for sorting a list which is almost sorted  Bubble Sorting method.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd