Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Define the terms - key attribute and value set, Define the terms   ...

Define the terms     i) Key attribute     ii) Value set  Key attribute:  An entity  type  usually  has  an attribute  whose  values  are  distinct  fr

Multikey file organization, what are the applications of multikey file orga...

what are the applications of multikey file organization?

Explain in detail about the abstract data type, Abstract data type The ...

Abstract data type The thing which makes an abstract data type abstract is that its carrier set and its operations are mathematical entities, like geometric objects or numbers;

Algorithm to insert element to a max-heap sequentially, Q. Write  down the ...

Q. Write  down the  algorithm  to  insert  an  element  to  a  max-heap  which  is  represented sequentially.           Ans: The algorithm to insert an element "newkey" to

Tree Traversal, If preorder traversal and post order traversal is given the...

If preorder traversal and post order traversal is given then how to calculate the pre order traversal. Please illustrate step by step process

Multidimensional array in one dimensional array, Q. By giving an example sh...

Q. By giving an example show how multidimensional array can be represented in one the dimensional array.

Splaying steps - splay trees, Readjusting for tree modification calls for r...

Readjusting for tree modification calls for rotations in the binary search tree. Single rotations are possible in the left or right direction for moving a node to the root position

Link list, algorithm for multiplication of two sparse matrices using link l...

algorithm for multiplication of two sparse matrices using link list

What is the best case complexity of quick sort, What is the best case compl...

What is the best case complexity of quick sort In the best case complexity, the pivot is in the middle.

Postorder traversal of a binary tree, Postorder traversal of a binary tree ...

Postorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; }; postorder(struct NODE

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd