Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Shortest path algorithms, A driver takes shortest possible route to attain ...

A driver takes shortest possible route to attain destination. The problem which we will discuss here is similar to this type of finding shortest route in any specific graph. The gr

Binary tree construction, Construct a B+ tree for the following keys, start...

Construct a B+ tree for the following keys, starting with an empty tree.  Each node in the tree can hold a maximum of 2 entries (i.e., order d = 1). Start with an empty root nod

Need help with working out. I dont really get it, Suppose there are exactly...

Suppose there are exactly five packet switches (Figure 4) between a sending host and a receiving host connected by a virtual circuit line (shown as dotted line in figure 4). The tr

Direct file organisation, It offers an effective way to organize data while...

It offers an effective way to organize data while there is a requirement to access individual records directly. To access a record directly (or random access) a relationship is

Enumerate about the data structure, Enumerate about the Data structure ...

Enumerate about the Data structure An arrangement of data in memory locations to signify values of the carrier set of an abstract data type. Realizing computational mechanis

Program segment for deletion of any element from the queue, Program segment...

Program segment for deletion of any element from the queue delete() { int delvalue = 0; if (front == NULL) printf("Queue Empty"); { delvalue = front->value;

Limitation of binary search, Limitation of Binary Search: - (i)  The co...

Limitation of Binary Search: - (i)  The complexity of Binary search is O (log2 n). The complexity is similar irrespective of the position of the element, even if it is not pres

Process of in-order traversal, In-order Traversal  This process when ex...

In-order Traversal  This process when executed iteratively also needs a stack and a Boolean to prevent the implementation from traversing any portion of a tree twice. The gener

Effective way of storing two symmetric matrices, Explain an efficient and e...

Explain an efficient and effective way of storing two symmetric matrices of the same order in the memory. A n-square matrix array will be symmetric if a[j][k]=a[k][j] for all j

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd