Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Efficiency of binary search, Each of the comparison in the binary search de...

Each of the comparison in the binary search decrease the number of possible candidates where the key value can be searched by a factor of 2 as the array is divided into two halves

Briefly explain the prim''s algorithm, Question 1 Describe the following- ...

Question 1 Describe the following- Well known Sorting Algorithms Divide and Conquer Techniques Question 2 Describe in your own words the different asymptotic func

Name the four data type groups, There are four data type groups:  I...

There are four data type groups:  Integer kepts whole numbers and signed numbers Floating-point Stores real numbers (fractional values). Perfect for storing bank deposit

Determine the greatest common divisor, Determine the greatest common diviso...

Determine the greatest common divisor (GCD) of two integers, m & n. The algorithm for GCD might be defined as follows: While m is greater than zero: If n is greater than m, s

Algorithm to build a binary tree , Q. Give the algorithm to build a binary ...

Q. Give the algorithm to build a binary tree where the yields of preorder and post order traversal are given to us.

Representation of arrays?, A representation of an array structure is a mapp...

A representation of an array structure is a mapping of the (abstract) array with elements of type T onto the store which is an array with elements of type BYTE. The array could be

What is algorithms optimality, What is algorithm's Optimality? Optimali...

What is algorithm's Optimality? Optimality  is  about  the  complexity  of  the  problem  that  algorithm  solves.  What  is  the  minimum amount  of  effort  any  algorithm  w

Define the term ''complexity of an algorithm, Define the term 'complexity o...

Define the term 'complexity of an algorithm; Complexity of an algorithm is the calculate of analysis of algorithm. Analyzing an algorithm means predicting the resources that th

Define min-heap, Define min-heap A min-heap is a complete binary tree i...

Define min-heap A min-heap is a complete binary tree in which each element is less than or equal to its children. All the principal properties of heaps remain valid for min-hea

Spanning trees, Spanning Trees: A spanning tree of a graph, G, refer to a ...

Spanning Trees: A spanning tree of a graph, G, refer to a set of |V|-1 edges which connect all vertices of the graph. There are different representations of a graph. They are f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd