Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Interest, I =PR/12 Numbers of years .Interest rate up to 1yrs ...

I =PR/12 Numbers of years .Interest rate up to 1yrs . 5.50 up to 5yrs . 6.50 More than 5 yrs . 6.75 design an algorithm based on the above information

Siso-4bit register, explain working of siso-register to store 1011 and show...

explain working of siso-register to store 1011 and show timing diagram &table

Data structures, #quCreate a flowchart to show the process that will allow ...

#quCreate a flowchart to show the process that will allow the implementation of Queue, Enqueue, and Dequeue operations.estion..

Explain the rgb model, RGB Model The RGB model is based on the assumpti...

RGB Model The RGB model is based on the assumption that any desired shade of colour can be obtained by mixing the correct amounts of red, green, and blue light. The exact hues

Sparse matrix, memory address of any element of lower left triangular spars...

memory address of any element of lower left triangular sparse matrix

Define big omega notation, Define Big Omega notation Big Omega notatio...

Define Big Omega notation Big Omega notation (?) : The lower bound for the function 'f' is given by the big omega notation (?). Considering 'g' to be a function from the non-n

Illustrate an example of algorithm, Illustrate an example of algorithm ...

Illustrate an example of algorithm Consider that an algorithm is a sequence of steps, not a program. You might use the same algorithm in different programs, or express same alg

Type of qualitative method, Type of Qualitative Method: Different  qua...

Type of Qualitative Method: Different  qualitative methods are suitable for different  types of study. Quite often we can  combine  qualitative and quantitative  methods. Many

Make adjacency matrix for un-directed graph, Q. Describe the adjacency matr...

Q. Describe the adjacency matrix and make the same for the given undirected graph.    Ans: The representation of Adjacency Matrix: This representation consists of

What are the different ways of representing a graph, What are the different...

What are the different ways of representing a graph? The different ways of representing a graph is: Adjacency list representation: This representation of graph having of an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd