Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Algorithm to build a binary tree , Q. Give the algorithm to build a binary ...

Q. Give the algorithm to build a binary tree where the yields of preorder and post order traversal are given to us.

Applications, Arrays are simple, however reliable to employ in more conditi...

Arrays are simple, however reliable to employ in more condition than you can count. Arrays are utilized in those problems while the number of items to be solved out is fixed. They

Binary search tree in ascending order, In order to get the contents of a Bi...

In order to get the contents of a Binary search tree in ascending order, one has to traverse it in In-order

Decision tree - id3 algorithm, Decision Tree - ID3 algorithm: Imagine ...

Decision Tree - ID3 algorithm: Imagine you only ever do one of the following four things for any weekend:   go shopping   watch a movie   play tennis   just

Deletion algorithm for dequeue, Deletion Algorithm for dequeue Step 1:...

Deletion Algorithm for dequeue Step 1: [check for underflow]   If front = 0 and rear = 0   Output "underflow" and return Step 2: [delete element at front end]   If front

Sequential search of a list is preferred over binary search, What are the c...

What are the conditions under which sequential search of a list is preferred over binary search? Sequential Search is a preferred over binary search when the list is unordered

Entity relationship diagram, This question is based on the requirements of ...

This question is based on the requirements of a system to record band bookings at gigs. (A 'gig' is an event at which one or more bands are booked to play). You do not need to know

Converting an infix expression into a postfix expression, Q. Illustrate the...

Q. Illustrate the steps for converting the infix expression into the postfix expression   for the given expression  (a + b)∗ (c + d)/(e + f ) ↑ g .

Space-complexity of the algorithm, The space-complexity of the algorithm is...

The space-complexity of the algorithm is a constant. It just needs space of three integers m, n and t. Thus, the space complexity is O(1). The time complexity based on the loop

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd