Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

DAA, what do we use asymptotic notation in study of algorithm?Describe vari...

what do we use asymptotic notation in study of algorithm?Describe various asymptotic notation and give their significance.

Search engines - applications of linear and binary search, Search engines e...

Search engines employ software robots to survey the Web & build their databases. Web documents retrieved & indexed through keywords. While you enter a query at search engine websit

General, whats the definition of ADT and data type?

whats the definition of ADT and data type?

Advantages of the last in first out method, Materials consumed are priced i...

Materials consumed are priced in a systematic and realistic manner. It is argued that current acquisition costs are incurred for the purpose of meeting current production and sales

State the symbols of abstract data type operation, Symbols of ADT oepration...

Symbols of ADT oeprations All Symbol ADT operations are implemented in Symbol class, except toSymbol(), which is implemented in classes (like String) which can generate a Symb

How many nodes in a tree have no ancestor, How many nodes in a tree have no...

How many nodes in a tree have no ancestors 1 node in atree have no ancestors.

Naïve recursive algorithm for binomial coefficients, How many recursive cal...

How many recursive calls are called by the naïve recursive algorithm for binomial coefficients, C(10, 5) and C(21, 12) C(n,k){c(n-1,k)+c(n-1,k-1) if 1 1 if k = n or k = 0

Best case, for i=1 to n if a[i}>7 for j=2 to n a[j]=a{j}+j for n=2 to n a...

for i=1 to n if a[i}>7 for j=2 to n a[j]=a{j}+j for n=2 to n a[k]=a[j]+i else if a[1]>4 && a[1] for 2 to a[1] a[j]= a{j]+5 else for 2to n a[j]=a[j]+i ..

The smallest element of an array''s index, The smallest element of an array...

The smallest element of an array's index is called its Lower bound.

Time complexity, how to learn about time complexity of a particular algorit...

how to learn about time complexity of a particular algorithm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd