Use of asymptotic notation in the study of algorithm, Data Structure & Algorithms

Assignment Help:

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.                                        

Ans:

The running time of the algorithm depends upon the number of characteristics and slight variation in the characteristics varies and affects the running time. The algorithm performance in comparison to alternate algorithm is best described by the order of growth of the running time of the algorithm. Let one algorithm for a problem has time complexity of c3n2 and another algorithm has c1n3 +c2n2 then it can be simply observed that the algorithm with complexity c3n2 will be faster compared to the one with complexity c1n3 +c2n2 for sufficiently larger values of n. Whatever be the value of c1, c2   and c3 there will be an 'n' past which the algorithm with the complexity c3n2 is quite faster than algorithm with complexity c1n3 +c2n2, we refer this n as the breakeven point. It is difficult to determine the correct breakeven point analytically, so asymptotic notation is introduced that describe the algorithm performance in a meaningful and impressive way. These notations describe the behaviour of time or space complexity for large characteristics. Some commonly used asymptotic notations are as follows:

1)      Big oh notation (O): The upper bound for a function 'f' is given by the big oh notation (O). Taking into consideration that 'g' is a function from the non-negative integers to the positive real numbers, we define O(g) as the set of function f such that for a number of real constant c>0 and some of the non negative integers constant n0  , f(n)≤cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): hear exists positive constants such that 0≤f f(n)≤cg(n) for all n, n≥n0} , we say "f is oh of g".

2)      Big Omega notation (O): The lower bound for a function 'f' is given by the big omega notation (O). Considering 'g' is the function from the non-negative integers to the positive real numbers, hear we define O(g) as the set of function f  such that  for a number of real constant c>0 and a number of non negative integers constant n0  , f(n)≥cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): here exists positive constants such that 0≤cg(n) ≤f(n) for all n, n≥n0}.

3)      Big Theta notation (θ):  The upper and lower bound for the function 'f' is given by the big oh notation (θ). Taking 'g' to be the function from the non-negative integers to the positive real numbers, here we define θ(g) as the set of function f  such that  for a number of real constant c1 and c2 >0 and a number of non negative integers constant n0  , c1g(n)≤f f(n)≤c2g(n) for all n≥n0. Mathematically, θ(g(n))={f(n): here exists positive constants c1 and c2 such that c1g(n)≤f f(n)≤c2g(n) for all n, n≥n0} , hence we say "f is oh of g"


Related Discussions:- Use of asymptotic notation in the study of algorithm

Recursion, difference between recursion and iteration

difference between recursion and iteration

Enumerate about the data structure, Enumerate about the Data structure ...

Enumerate about the Data structure An arrangement of data in memory locations to signify values of the carrier set of an abstract data type. Realizing computational mechanis

B-tree of degree 3, Q. Explain the result of inserting the keys given. ...

Q. Explain the result of inserting the keys given. F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E  in an order to an empty B-tree of degree-3.

Explain time complexity, Time Complexity:- The time complexity of an algori...

Time Complexity:- The time complexity of an algorithm is the amount of time it requires to run to completion. Some of the reasons for studying time complexity are:- We may be in

Determine the effect of ruby in implementation of string, Determine the eff...

Determine the effect of Ruby in implementation of string Ruby has a String class whose instances are mutable sequences of Unicode characters. Symbol class instances are charact

Size of stack, The size of stack was declared as ten. Thus, stack cannot ho...

The size of stack was declared as ten. Thus, stack cannot hold more than ten elements. The major operations which can be performed onto a stack are push and pop. However, in a prog

Determine the area subdivision method, Area Subdivision Method In this ...

Area Subdivision Method In this method, the viewport is examined for clear decisions on the polygons situated in it, in regard to their overlap and visibility to the viewer. Fo

#input restricted DEQUE, #why all the 4 operations i.e. insertion n del...

#why all the 4 operations i.e. insertion n deletion from rear end and front end is valid in input restricted DEQUE

Java code and algorythem, Suppose that you want to develop a program that a...

Suppose that you want to develop a program that accepts a postfix expression and asks values for variables in the expression. Then you need to calculate the answer for the expressi

Explain division method, Explain Division Method Division Method: - In...

Explain Division Method Division Method: - In this method, key K to be mapped into single of the m states in the hash table is divided by m and the remainder of this division

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd