Use of asymptotic notation in the study of algorithm, Data Structure & Algorithms

Assignment Help:

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.                                        

Ans:

The running time of the algorithm depends upon the number of characteristics and slight variation in the characteristics varies and affects the running time. The algorithm performance in comparison to alternate algorithm is best described by the order of growth of the running time of the algorithm. Let one algorithm for a problem has time complexity of c3n2 and another algorithm has c1n3 +c2n2 then it can be simply observed that the algorithm with complexity c3n2 will be faster compared to the one with complexity c1n3 +c2n2 for sufficiently larger values of n. Whatever be the value of c1, c2   and c3 there will be an 'n' past which the algorithm with the complexity c3n2 is quite faster than algorithm with complexity c1n3 +c2n2, we refer this n as the breakeven point. It is difficult to determine the correct breakeven point analytically, so asymptotic notation is introduced that describe the algorithm performance in a meaningful and impressive way. These notations describe the behaviour of time or space complexity for large characteristics. Some commonly used asymptotic notations are as follows:

1)      Big oh notation (O): The upper bound for a function 'f' is given by the big oh notation (O). Taking into consideration that 'g' is a function from the non-negative integers to the positive real numbers, we define O(g) as the set of function f such that for a number of real constant c>0 and some of the non negative integers constant n0  , f(n)≤cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): hear exists positive constants such that 0≤f f(n)≤cg(n) for all n, n≥n0} , we say "f is oh of g".

2)      Big Omega notation (O): The lower bound for a function 'f' is given by the big omega notation (O). Considering 'g' is the function from the non-negative integers to the positive real numbers, hear we define O(g) as the set of function f  such that  for a number of real constant c>0 and a number of non negative integers constant n0  , f(n)≥cg(n) for all n≥n0. Mathematically, O(g(n))={f(n): here exists positive constants such that 0≤cg(n) ≤f(n) for all n, n≥n0}.

3)      Big Theta notation (θ):  The upper and lower bound for the function 'f' is given by the big oh notation (θ). Taking 'g' to be the function from the non-negative integers to the positive real numbers, here we define θ(g) as the set of function f  such that  for a number of real constant c1 and c2 >0 and a number of non negative integers constant n0  , c1g(n)≤f f(n)≤c2g(n) for all n≥n0. Mathematically, θ(g(n))={f(n): here exists positive constants c1 and c2 such that c1g(n)≤f f(n)≤c2g(n) for all n, n≥n0} , hence we say "f is oh of g"


Related Discussions:- Use of asymptotic notation in the study of algorithm

Explain time complexity, Time Complexity:- The time complexity of an algori...

Time Complexity:- The time complexity of an algorithm is the amount of time it requires to run to completion. Some of the reasons for studying time complexity are:- We may be in

Flowchart, conversion of centrigral to frahenhit

conversion of centrigral to frahenhit

Deletion of an element from the linear array, Program will demonstrate dele...

Program will demonstrate deletion of an element from the linear array /* declaration of delete_list function */ voiddelete_list(list *, int); /* definition of delete_list

Pseudo code, I need help writing a pseudocode for my assignment can anyone ...

I need help writing a pseudocode for my assignment can anyone help?

Array implementation of a queue, Since the stack is list of elements, the q...

Since the stack is list of elements, the queue is also a list of elements. The stack & the queue differ just in the position where the elements may be added or deleted. Similar to

State in brief about assertion, State  in brief about assertion Asser...

State  in brief about assertion Assertion: A statement which should be true at a designated point in a program.

Implement an open hash table, In a chained hash table, each table entry is ...

In a chained hash table, each table entry is a pointer to a collection of elements. It can be any collection that supports insert, remove, and find, but is commonly a linked list.

Explain insertion sort, Q. Explain the insertion sort with a proper algorit...

Q. Explain the insertion sort with a proper algorithm. What is the complication of insertion sort in the worst case?

Calculate address of an element in an array., Q. Explain the technique to c...

Q. Explain the technique to calculate the address of an element in an array. A  25 × 4  matrix array DATA is stored in memory in 'row-major order'. If base  address is 200 and

Hw7, Handout 15 COMP 264: Introduction to Computer Systems (Section 001) Sp...

Handout 15 COMP 264: Introduction to Computer Systems (Section 001) Spring 2013 R. I. Greenberg Computer Science Department Loyola University Water TowerCampus, Lewis Towers 524 82

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd