Representing sparse matrix in memory using array, Data Structure & Algorithms

Assignment Help:

Q. What do you understand by the term sparse matrix? How sparse matrix is stored in the memory of a computer? Write down the function to find out the transpose of a sparse matrix using this particular representation.                                                                                                             

Ans.

Sparse Matrix is described below

A m x n matrix A would be a sparse if most of its elements are zero. A matrix that is not sparse is known as dense matrix.

Representing Sparse Matrix in Memory Using Array is described below

In an array representation an array of triplets of type < row, col, element> is used to store non-zero elements, where 1st field of the triplet is used to trace row position second to record column and the 3rd to record the non zero elements of  sparse matrix.

In addition, we are required to record the size of the matrix ( i.e. number of rows and the number of columns) and non zero elements of array of triplets are used for this purpose where the 1st filed saves the number of rows and the 2nd field saves the number of columns and the third field saves the number of non zero elements. The remaining elements of the array saves matrix on row major order. The array representation will be

[2 * (n+1) * size of (int) + n*size of(T)] bytes of memory where n is the number of non-zero elements and T is the data type of the element.

Ex: consider a 5*6 sparse matrix which is written below

1713_sparse matrix2.png 

Array Representation of Sparse Matrix is given below

1754_sparse matrix3.png

Here n = 5 but the size of array is 6 as first row saves the order of array along with a number non-zero elements.

Memory declaration will be as followsas shown below

# define Max 50 struct triplet

{   int row;

int col;

float element;

}

struct triplet sparse_mat [MAX];

sparse matrix represented as above

[n is the number of non zero elements in array]

for I= 1,2,...n+1 temp = a[I].row a[I].row= a[I].col a[I].col = temp endfor.


Related Discussions:- Representing sparse matrix in memory using array

Which data structure is used for implementing recursion, Which data structu...

Which data structure is used for implementing recursion Stack.

Representation of sets?, A set s is conveniently shown in a computer store ...

A set s is conveniently shown in a computer store by its characteristic function C(s). This is an array of logical numbers whose ith element has the meaning "i is present in s". As

Define a tree and list its properties, QUESTION (a) Define a tree and l...

QUESTION (a) Define a tree and list its properties. (b) By showing all your workings, draw the spanning tree for the following graph based on the Breadth-First-Search algori

Complexity of an algorithm, compare two functions n and 2n for various valu...

compare two functions n and 2n for various values of n. determine when second becomes larger than first

ERM, Hi, can you give me a quote for an E-R diagram

Hi, can you give me a quote for an E-R diagram

Minimum cost spanning trees, A spanning tree of any graph is only a subgrap...

A spanning tree of any graph is only a subgraph that keeps all the vertices and is a tree (having no cycle). A graph might have many spanning trees. Figure: A Graph

Enumerate the types in ruby, Enumerate the Types in Ruby Ruby is a pure...

Enumerate the Types in Ruby Ruby is a pure object-oriented language, meaning that all types in Ruby are classes, and each value in a Ruby program is an instance of a class. Thi

Determine the warnock algorithm, Warnock's Algorithm A divide and conqu...

Warnock's Algorithm A divide and conquer algorithm Warnock (PolyList PL, ViewPort VP) If (PL simple in VP) then Draw PL in VP, else Split VP vertically and horiz

Explain the scan-line algorithm, Explain the Scan-Line Algorithm This i...

Explain the Scan-Line Algorithm This image-space method for removing hidden surfaces is an extension of the scan-line algorithm for filling polygon interiors. Instead of fillin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd