Representing sparse matrix in memory using array, Data Structure & Algorithms

Assignment Help:

Q. What do you understand by the term sparse matrix? How sparse matrix is stored in the memory of a computer? Write down the function to find out the transpose of a sparse matrix using this particular representation.                                                                                                             

Ans.

Sparse Matrix is described below

A m x n matrix A would be a sparse if most of its elements are zero. A matrix that is not sparse is known as dense matrix.

Representing Sparse Matrix in Memory Using Array is described below

In an array representation an array of triplets of type < row, col, element> is used to store non-zero elements, where 1st field of the triplet is used to trace row position second to record column and the 3rd to record the non zero elements of  sparse matrix.

In addition, we are required to record the size of the matrix ( i.e. number of rows and the number of columns) and non zero elements of array of triplets are used for this purpose where the 1st filed saves the number of rows and the 2nd field saves the number of columns and the third field saves the number of non zero elements. The remaining elements of the array saves matrix on row major order. The array representation will be

[2 * (n+1) * size of (int) + n*size of(T)] bytes of memory where n is the number of non-zero elements and T is the data type of the element.

Ex: consider a 5*6 sparse matrix which is written below

1713_sparse matrix2.png 

Array Representation of Sparse Matrix is given below

1754_sparse matrix3.png

Here n = 5 but the size of array is 6 as first row saves the order of array along with a number non-zero elements.

Memory declaration will be as followsas shown below

# define Max 50 struct triplet

{   int row;

int col;

float element;

}

struct triplet sparse_mat [MAX];

sparse matrix represented as above

[n is the number of non zero elements in array]

for I= 1,2,...n+1 temp = a[I].row a[I].row= a[I].col a[I].col = temp endfor.


Related Discussions:- Representing sparse matrix in memory using array

Search on a heap file, Consider the file " search_2013 ". This is a text fi...

Consider the file " search_2013 ". This is a text file containingsearch key values; each entry is a particular ID (in the schema given above). You are tosimulate searching over a h

Depth first traversal, A depth-first traversal of a tree visits a nodefirst...

A depth-first traversal of a tree visits a nodefirst and then recursively visits the subtrees of that node. Similarly, depth-first traversal of a graph visits a vertex and then rec

Depth-First Traversal, With the help of a program and a numerical example e...

With the help of a program and a numerical example explain the Depth First Traversal of a tree.

Prims algorithm, how to implement prims algorithm dynamically

how to implement prims algorithm dynamically

Fifo, give any example of page replacement using fifo and use your own refe...

give any example of page replacement using fifo and use your own reference string

Convert a binary tree into its mirror image by traversing it, One can chang...

One can change a binary tree into its mirror image by traversing it in Postorder is the only proecess whcih can convert binary tree into its mirror image.

Applications of linear and binary search, The searching method are applicab...

The searching method are applicable to a number of places in current's world, may it be Internet, search engines, text pattern matching, on line enquiry, finding a record from data

Efficient algorithms.., implementation of fast fourier transforms for non p...

implementation of fast fourier transforms for non power of 2

Graph, explain the prims''s algorithm with suitable example?

explain the prims''s algorithm with suitable example?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd