Representing sparse matrix in memory using array, Data Structure & Algorithms

Assignment Help:

Q. What do you understand by the term sparse matrix? How sparse matrix is stored in the memory of a computer? Write down the function to find out the transpose of a sparse matrix using this particular representation.                                                                                                             

Ans.

Sparse Matrix is described below

A m x n matrix A would be a sparse if most of its elements are zero. A matrix that is not sparse is known as dense matrix.

Representing Sparse Matrix in Memory Using Array is described below

In an array representation an array of triplets of type < row, col, element> is used to store non-zero elements, where 1st field of the triplet is used to trace row position second to record column and the 3rd to record the non zero elements of  sparse matrix.

In addition, we are required to record the size of the matrix ( i.e. number of rows and the number of columns) and non zero elements of array of triplets are used for this purpose where the 1st filed saves the number of rows and the 2nd field saves the number of columns and the third field saves the number of non zero elements. The remaining elements of the array saves matrix on row major order. The array representation will be

[2 * (n+1) * size of (int) + n*size of(T)] bytes of memory where n is the number of non-zero elements and T is the data type of the element.

Ex: consider a 5*6 sparse matrix which is written below

1713_sparse matrix2.png 

Array Representation of Sparse Matrix is given below

1754_sparse matrix3.png

Here n = 5 but the size of array is 6 as first row saves the order of array along with a number non-zero elements.

Memory declaration will be as followsas shown below

# define Max 50 struct triplet

{   int row;

int col;

float element;

}

struct triplet sparse_mat [MAX];

sparse matrix represented as above

[n is the number of non zero elements in array]

for I= 1,2,...n+1 temp = a[I].row a[I].row= a[I].col a[I].col = temp endfor.


Related Discussions:- Representing sparse matrix in memory using array

Explain the arrays in ruby, Explain the Arrays in Ruby Ruby arrays are ...

Explain the Arrays in Ruby Ruby arrays are dynamic arrays which expand automatically whenever a value is stored in a location beyond current end of the array. To the programmer

Data structures, #quCreate a flowchart to show the process that will allow ...

#quCreate a flowchart to show the process that will allow the implementation of Queue, Enqueue, and Dequeue operations.estion..

Internal sorting, In internal sorting, all of the data to be sorted is obta...

In internal sorting, all of the data to be sorted is obtainable in the high speed main memory of the computer. We will learn the methods of internal sorting which are following:

Searhing and sorting algorithms, how I can easily implement the bubble,sele...

how I can easily implement the bubble,selection,linear,binary searth algorithms?

Column major representation, Column Major Representation In memory th...

Column Major Representation In memory the second method of representing two-dimensional array is the column major representation. Under this illustration, the first column of

Difference between array and abstract data types, Difference between array ...

Difference between array and abstract data types Arrays aren't abstract data types since their arrangement in the physical memory of a computer is an essential feature of their

Inorder and preorder traversal to reconstruct a binary tree, Q. Using the f...

Q. Using the following given inorder and preorder traversal reconstruct a binary tree Inorder sequence is D, G, B, H, E, A, F, I, C

Red-black trees, A Red-Black Tree (RBT) is a type of Binary Search tree wit...

A Red-Black Tree (RBT) is a type of Binary Search tree with one extra bit of storage per node, i.e. its color that can either be red or black. Now the nodes can have any of the col

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd