Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3, Mathematics

Assignment Help:

For the given function recognize the intervals where the function is increasing and decreasing and the intervals where the function is concave up & concave down. Utilizes this information to sketch the graph.

                                             h ( x ) = 3x5 - 5x3 + 3

Solution

we are going to require the first two derivatives therefore let's get those first.

h′ ( x ) = 15x4 -15x2  = 15x2 ( x -1) ( x + 1)

h′′ ( x ) = 60x3 - 30x = 30x (2x2  -1)

Let's begin with the increasing/decreasing information .

For this function there are three critical points: x = -1 , x = 0 , and x = 1 .  Below is the number line for the increasing/decreasing information.

647_concave5.png

Thus, it looks like we've got the given intervals of increasing & decreasing.

Increasing: - ∞ < x < -1 and 1 < x < ∞

Decreasing: -1 < x < 0, 0 < x < 1

Note as well that from the first derivative test we can also say that x = -1 is a relative maximum & that x = 1 is a relative minimum.  Also x = 0 is neither relative minimum nor maximum.

Now let's get the intervals where the function is concave up & concave down.  If you think regarding it this procedure is almost identical to the procedure we use to recognize the intervals of increasing & decreasing.  The only difference is that we will be using the second derivative rather than the first derivative.

The first thing that we have to do is recognize the possible inflection points. These will be where there the second derivative will be zero or doesn't present. The second derivative in this case is a polynomial and therefore will exist everywhere.  It will be zero at the given points.

                                  x = 0, x = ±1/√2 = ±0.7071

 

As with the increasing & decreasing part we can draw a number line up and utilizes these points to divide the number line in regions.  Within these regions we know that the second derivative will always contain the similar sign as these three points are the only places where the function might change sign. Thus, all that we have to do is pick a point from each of region and plug it into the second derivative.  Then the second derivative will have that sign within the whole region from which the point came from

Following is the number line for this second derivative.

1746_concave3.png

Therefore, it looks like we've got the given intervals of concavity.

Concave Up : -  1/√2 < x < 0 and 1/√2   < x < ∞

Concave Down :- ∞ < x < -  1/√2  and  0 < x <  1/√2  

It also means that

x = 0, x = ±1/√2  = ±0.7071

are all inflection points.

All these information can be a little overwhelming while going to sketch the graph. The first thing which we have to do is get some starting points. The critical points & inflection points are good starting points.  Therefore, first graph these points.  Now, begin to the left & begin graphing the increasing/decreasing information. As we graph this we will ensure that the concavity information matches up with what we're graphing.

By using all this information to sketch the graph gives the following graph.

1270_concave2.png


Related Discussions:- Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3

Example of mixing problems, A 1500 gallon tank primarily holds 600 gallons ...

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has

Find out the interval of validity, Without solving, find out the interval o...

Without solving, find out the interval of validity for the subsequent initial value problem. (t 2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3 Solution First, in order to u

Grouping-categories of situations requiring division , Grouping - situatio...

Grouping - situations in which we need to find the number of portions of a given size which can be obtained from a given quantity. (e.g., if there are 50 children in a class and t

Matrices, problem faced by students

problem faced by students

Characteristics and limitations of moving average, Characteristics and Limi...

Characteristics and Limitations of moving average Characteristics of moving average 1) The more the number of periods in the moving average, the greater the smoothing

Problem solving, Let E; F be 2 points in the plane, EF has length 1, and le...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 and N has no cho

Determine the leading order term the asymptotic expansion, Submit your work...

Submit your working in (neat) handwritten form (do not type up your solutions). For the plots that you generate in Maple or Matlab, you can print them out and attach them at the en

Solid mensuration, given dimensions: 130cm, 180cm, and 190cm is to be divid...

given dimensions: 130cm, 180cm, and 190cm is to be divided by a line bisecting the longest side shown from its opposite vertex. what''s the area adjacent to 180cm? ;

Percentage, A person spent 12.5% of his money and then rs.1600 and then 40%...

A person spent 12.5% of his money and then rs.1600 and then 40% of the remaining,now left rs.960 with him.What is his original money?

Substitution rule, Substitution Rule ∫ f ( g ( x )) g′ ( x ) dx = ∫ f (...

Substitution Rule ∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x ) we can't do the following integrals through general rule. This looks considerably

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd