Ratio test - sequences and series, Mathematics

Assignment Help:

Ratio Test

In this part we are going to take a look at a test that we can make use to see if a series is absolutely convergent or not.  Remind that if a series is absolutely convergent after that we will also know that it's convergent and thus we will frequently use it to simply find out the convergence of a series.  

 Previous to proceeding with the test let's do a quick reminder of factorials.  This test will be specifically useful for series that consist of factorials (and we will see some in the applications) thus let's make sure we can deal along with them before we run into them in an instance.

If n is an integer like n ≥ 0 then n factorial is illustrated as,

n! = n(n-1) (n-2) ... (3) (2)(1)                                                   if n > 1 by definition

0! = 1

Let's calculate a couple real quick.

1! =1

2! = 2(1) = 2

3! = 3 (2)(1) = 6

4! = 4 (3) (2) (1) = 24

5! = 5 (4) (3) (2) (1) = 120

In the final computation above, note that we could rewrite the factorial in a couple of different ways.  For example,

512_Ratio Test - Sequences and Series.png

Generally we can always "strip out" terms from a factorial like this.

n! = n (n-1) (n-2) ... (n-k) (n- (k+1)).... (3) (2) (1)

= n (n-1) (n-2) ... (n-k). (n- (k+1))!

= n (n-1) (n-2) ... (n-k). (n- k-1)!

We will require to do this on occasion so don't forget about it.

 As well, when dealing with factorials we need to be very cautious with parenthesis. Example for this, (2n)! ≠ 2 n! as we can see if we write each of the subsequent factorials out.

(2n)! = (2n) (2n-1) (2n-2) ... (3) (2) (1)

2 n! = 2 [(n) (n-1) (n-2).... (3) (2) (1)]


Related Discussions:- Ratio test - sequences and series

Formulas for the volume of this solid, Formulas for the volume of this soli...

Formulas for the volume of this solid V = ∫ b a A ( x) dx          V = ∫ d c A ( y ) dy where, A ( x ) & A ( y ) is the cross-sectional area of the solid. There are seve

Basics of series - sequences and series, Series - The Basics That top...

Series - The Basics That topic is infinite series.  So just define what is an infinite series?  Well, let's start with a sequence {a n } ∞ n=1 (note the n=1 is for convenie

Finding length and height with volume and width?, I figured out the volume ...

I figured out the volume and the width, but I have no idea how to use that information to get the height and the length!

#perimeter, what are the formulas in finding the perimeter of a plane figur...

what are the formulas in finding the perimeter of a plane figure?

Earning money, Terry earns $680 per week. He is entitled to 4 weeks annual ...

Terry earns $680 per week. He is entitled to 4 weeks annual leave and receives an additional holiday loading of 17.5%. Calculate his total pay for this holiday period.

Evaluate integrals (1 - (1 /w) cos (w - ln w) dw, Evaluate following integr...

Evaluate following integrals.                       ( (1 - (1 /w) cos (w - ln w) dw Solution In this case we know how to integrate only a cosine therefore let's makes th

Aggregation and augmentation, Previously discussed how important it is to e...

Previously discussed how important it is to expose children to a variety of verbal problems involving the concept that they are trying to learn. Children attach meaning to the abst

Permuation and combination, how many words can be formed from letters of wo...

how many words can be formed from letters of word daughter such that word contain 2vowles and 3consonant

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd