Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Present your own fully documented and tested programming example illustrating the problem of unbalanced loads. Describe the use of OpenMP's scheduler as a means of mitigating this problem.
The below example shows a number of tasks that all update a global counter. Since threads share the same memory space, they indeed see and update the same memory location. The code returns a false result because updating the variable is much quicker than creating the thread as on a multicore processor the chance of errors will greatly increase. If we artificially increase the time for the update, we will no longer get the right result. All threads read out the value of sum, wait a while (presumably calculating something) and then update.
#include
#include "pthread.h"
int sum=0;
void adder() {
int sum = 0;
int t = sum; sleep(1); sum = t+1;
return;
}
#define NTHREADS 50
int main() {
int i;
pthread_t threads[NTHREADS];
printf("forking\n");
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1;
printf("joining\n");
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
{
if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;
printf("Sum computed: %d\n",sum);
return 0;
The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way.
#pragma omp for
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
reasons for process termination
Placement algorithms :calculate where in available real-memory to execute a program. Common functions are next-fit, first-fit, and best-fit. Replacement algorithms :are
Q. Which of the subsequent programming techniques and structures are good for a demand-paged environment? Which aren't good? Describe your answers. a. Stack b. Hashed symbol
Problem: Managing Outside Communication. a. What is the principal action we use when communicating through a web browser? b. Give an example of how to preaddress an email
What is sector sparing is proper definition
. cash flou.
function of lazy swapper
what is the operating cycle in vegetable growing?
What is bounded buffer
whats the problem in two state model ?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd