Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Potentiometric type DVM: A potentiometric type of DVM, employs voltage comparison technique. In this DVM the unknown Voltage is compared with a reference voltage value is fixed by the setting of the calibrated potentiometer. The potentiometer setting is changed to obtain balance (i.e. null condition).When null conditions are obtained the value of the unknown voltage, is indicated by the dial setting of the potentiometer.
In potentiometric type DVMs, the balance is not obtained manually but is arrived at automatically. Thus, this DVM is in fact a self-balancing potentiometer .The potentiometric DVM is provided with a readout which displays the voltage being measured.
The block diagram of basic circuit of a potentiometric DVM is shown in.
The unknown voltage is filtered and attenuated to suitable level. This input voltage is applied to a comparator (also known as error detector). This error detector may be chopper. The reference voltage is obtained from a fixed voltage source. This L voltage is applied to a potentiometer R. The value of the feedback voltage depends upon the position of the sliding contact; the feedback voltage is also applied to the comparator.
The unknown voltage and the feedback voltages are compared in the comparator. The output voltage of the comparator is the difference of the above two voltages. The difference of voltage is called the error signal. The error signal is amplified and is fed to a potentiometer adjustment device which moves the sliding contact of the potentiometer. This magnitude by which the sliding contact moves depends upon the magnitude of the error signal. The direction of movement of slider depends upon whether the feedback voltage is larger or the input voltage is larger. The sliding contact moves such a place where the feedback voltage equals the unknown voltage. In that case, there will not be any error voltage and hence here will be no input to the device adjusting the position of the sliding contact and therefore it (sliding contact) will come to rest. The position of the potentiometer adjustment device at this point is indicated in numerical form on the digital readout device associated with it. Since the position at which no voltage appears at potentiometer adjustment device is the one where the unknown voltage equals the feedback voltage, the reading of readout device indicates the value of unknown voltage. The reference voltage source must be extremely stable and generally consists of a standard cell or a Zener diode sources.
Discuss the layout configuration of FMS with neat and clean diagram? Write the disadvantages and advantages of FMS? Write the short note on following: a) Applications of FMS
Loss Reduction and Efficiency Improvement of Electrical Energy 1. There are inherent losses in Transmission and Distribution of electrical energy from Generating station
Commercial Losses in Electrical Systems Commercial losses are caused by pilferage, theft, defective meters, and errors in meter reading and in estimating un-metered supply of
Ask questionDraw the following circuits on the PROTEUS and check the output waveform on oscilloscope #Minimum 100 words accepted#
A 440-V, 60-Hz, six-pole, wye-connected, squirrel-cage induction motor with a full-load speed of 1170 r/min has the following parameters per phase referred to the stator: R 1 = 0.
simple project
Describe the three main sources of power dissipation in CMOS logic. Hence calculate the power dissipated in a CMOS ASIC of 40,000 gates operating at a frequency of 133MHz with a s
Time constant Time constant, defines as time for current achieve maximum (IM) if this maintain the early promotion rate current.
A 300 km, 3-phase, 50Hz transmission line has spacing as shown in Figure. Each phase of the line consists of a bundle of three conductors. (a) Find the total per-phase inductanc
Torque-Speed Characteristics of 3-Phase Induction Motors
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd