More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

We know this equation a°=1.prove this?, we know that log1 to any base =0 ta...

we know that log1 to any base =0 take antilog threfore a 0 =1

If 0.3 is added to 0.2 times the quantity x - 3, If 0.3 is added to 0.2 tim...

If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5. What is the value of x? The statement, "If 0.3 is added to 0.2 times the quantity x - 3, the result is 2.5,

Volumes of solids of revolution - method of rings, Volumes of Solids of Rev...

Volumes of Solids of Revolution / Method of Rings In this section we will begin looking at the volume of solid of revolution. We have to first describe just what a solid of rev

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Differential calculus and probability, Josephine is constructing an open bo...

Josephine is constructing an open box by cutting the squares off the corners of a sheet of paper sized 20cm by 16cm. She is considering options of 3cm, 4cm and 5cm squares in order

Mortgages, compute the monthly payment on a 30 year level payment mortagage...

compute the monthly payment on a 30 year level payment mortagagesasuming an annual mortgages principal of $400000

Do all our activities involve mathematics?, Do All Our Activities Involve M...

Do All Our Activities Involve Mathematics? :  The answer to this is 'yes' and 'no'. For those who look for mathematics and know where to look for it, it is 'yes'. For those who do

Demand Forecast, How should shoppers Stop develop its demand forecasts?

How should shoppers Stop develop its demand forecasts?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd