More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Organized list strategy, i can not figer out my homework it says "USE THE M...

i can not figer out my homework it says "USE THE MAKE AN ORGANIZED LIST STRATEGY,Medeline bikes 4 laps around her neighborhood 2 times a week.How many laps does she bike in 8 weeks

Show that the function f is one-one but not onto, Consider the function f: ...

Consider the function f: N → N, where N is the set of natural numbers, defined by f(n) = n 2 +n+1. Show that the function f is one-one but not onto. Ans: To prove that f is one

Maths for fun-mathematics- in our lives, Maths For Fun :  Often, when I ha...

Maths For Fun :  Often, when I have time on my hands, I try to solve interesting mathematical questions of the following kind. Sometimes my friends and I create the problems, and

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Law of Cosines, The law of cosines can only be applied to acute triangles. ...

The law of cosines can only be applied to acute triangles. Is this true or false?

Determine z-scores and percentiles, Q. Determine Z-scores and Percentiles? ...

Q. Determine Z-scores and Percentiles? Ans. Z-scores help measure how far a piece of data is from the mean. More specifically, Z-scores tell how far a piece of data is fr

Problem, La proporción de empleados de una empresa que usan su auto para ir...

La proporción de empleados de una empresa que usan su auto para ir al trabajo es 5:16. Si hay un total de 800 empleados, diga la cantidad de autos que se espera que haya estacionad

Find out that sets of functions are linearly dependent, Find out if the fol...

Find out if the following sets of functions are linearly dependent or independent.  (a) f (  x ) = 9 cos ( 2 x )    g (  x ) = 2 cos2 (  x ) -  2 sin 2 (  x ) (b) f

The value of m+n, Every point (x,y) on the curve y=log2 3x is transferred t...

Every point (x,y) on the curve y=log2 3x is transferred to a new point by the following translation (x',y')=(x+m,y+n), where m and n are integers. The set of (x',y') form the curve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd