Method to solve binomials of second degree, Mathematics

Assignment Help:

In this part we look at another method to obtain the factors of an expression. In the above you have seen that x2 - 4x + 4 = (x - 2)2 or (x - 2)(x - 2). If you observe it carefully we find that the middle number - 4 is the sum of -2 and -2 and the last term 4 is the product of -2 and -2. That is, if you think that so and so number might be the factors of the binomial those numbers should satisfy this condition. We take another example. You are given x2 + 15x + 56 and asked to factorize it. Now if you think that, say, 6 and 7 are the factors of this expression then their product should be equal to 56 and their sum should be equal to 15. However in this case we observe that the product is 42 and the sum is 13. Therefore, 6 and 7 cannot be the factors of this expression. Now try 7 and 8. We find that their product is 56 and the sum 15. That is, 7 and 8 are the factors of the given expression. This can be clarified by multiplying (x + 8) and (x + 7).

One point to which we have to pay attention is that we have to take even signs into consideration. For instance, consider an expression x2 - 17x + 70. What could be the factors of this expression? Let us try 7 and 10. No doubt, the product is 70 and the sum 17. Still these cannot be the factors of the given expression, because the sum is -17 and we got only 17. Now let us try -7 and -10. The sum of these two numbers gives us -17 and their product as 70. This is what we require. Therefore, the factors are x - 7 and x - 10 (observe that in this case if we took x = -7 and         x = -10, we would have got the factors as x + 7 and x + 10, whose multiplication would give us x2 + 17x + 70 and not x2 - 17x + 70. That is, the values should be considered as they are). Now let us consider an expression x2 - 3x - 70. Let us try 7 and -10 for this expression. The sum of these two values is -10 + 7  = -3 and the product being -70. That is, x + 7 and x - 10 are two factors of the given expression and not x - 7 and x + 10.


Related Discussions:- Method to solve binomials of second degree

Example of distributive law, Maya gives the children examples of distributi...

Maya gives the children examples of distributive with small numbers initially, and leads them towards discovering the law. The usual way she does this is to give the children probl

Solid mensuration, The two sides of a triangle are 17 cm and 28 cm long, an...

The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to

Abstract algebra, Let D(subscript12) = ({x,y : x^2 = e ; y^6 = e ; xy =(...

Let D(subscript12) = ({x,y : x^2 = e ; y^6 = e ; xy =(y^-1) x}) a) Which of the following subsets are subgroups of D(subscript12) ? Justify your answer. i) {x,y,xy,y^2,y^3,e}

Exponents, i need help with exponents and how to add them

i need help with exponents and how to add them

Developing pre-number concepts, DEVELOPING PRE-NUMBER CONCEPTS :  Previous...

DEVELOPING PRE-NUMBER CONCEPTS :  Previously you have read how children acquire concepts. You know that, for children to grasp a concept, they must be given several opportunities

Find sampling interval - horizontal and vertical asymptote, In a digital fi...

In a digital filter, one of the parameters in its difference equation is given by the formula a) Show that the above formula has one horizontal and one vertical asymptote.

Standard basis vectors -application of scalar multiplication, Standard Basi...

Standard Basis Vectors Revisited In the preceding section we introduced the idea of standard basis vectors with no really discussing why they were significant.  We can now do

Permuation and combination, how many words can be formed from letters of wo...

how many words can be formed from letters of word daughter such that each word contain 2vowles and 3consonant

Children learn maths by experiencing things, Children Learn By Experiencing...

Children Learn By Experiencing Things : One view about learning says that children construct knowledge by acting upon things. They pick up things, throw them, break them, join the

Pair of straight line, show that one of the straight lines given by ax2+2hx...

show that one of the straight lines given by ax2+2hxy+by2=o bisect an angle between the co ordinate axes, if (a+b)2=4h2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd