Mechanical vibrations, Mathematics

Assignment Help:

This time we are going to take a look at an application of second order differential equations. It's now time take a look at mechanical vibrations. In exactly we are going to look at a mass which is hanging from a spring.

Vibrations can arise in pretty much all branches of engineering and thus what we're going to be doing now can be simply adapted to other situations, generally with just a change in notation.

Let's find the situation setup. We are going to begin with a spring of length l, termed as the natural length, and we're going to hook an object along with mass m up to this. While the object is attached to the spring, it will stretch a length of L. We will identify it the equilibrium position the position of the center of gravity for the object like this hangs on the spring along with no movement.

There is sketch given below, of the spring with and without the object attached to this.

1446_Mechanical Vibrations.png

As denoted in the above sketch we are going to suppose that all velocities, forces and displacements in the downward direction will be positive. All velocities, forces and displacements in the upward direction will be negative.

Also, as demonstrated in the sketch above, we will measure all displacement of the mass by its equilibrium position. Thus, the u = 0 position will corresponding to the center of gravity for the mass as this hangs on the spring and is at rest, which is no movement.

Here, we need to develop a differential equation which will provide the displacement of the object at any time t.  Firstly, recall Newton's Second Law of Motion.

ma = F

In this case we will use the second derivative of the displacement, u, for the acceleration and so Newton's Second Law turns into,

mu′′ = F (t, u, u′)

We now require determining all the forces that will act on the object. There are four forces which we will suppose act upon the object. Two, will all the time act upon the object and two which may or may not act on the object.


Related Discussions:- Mechanical vibrations

Solution by factorization, Solution by Factorization, please solve quadrati...

Solution by Factorization, please solve quadratic equations by Factorization.

What are intervals, A subset of the real line is called as an interval. Int...

A subset of the real line is called as an interval. Intervals are very significant in computing inequalities or in searching domains etc. If there are two numbers a, b € R such tha

Negative number, what should added to the sum of (-26) and 31 to m...

what should added to the sum of (-26) and 31 to make it equal to the sum of (-35) and (-11) question #Minimum 100 words accepted#

., WRITE the condition that should be fulfilled by two matrices A&B to get ...

WRITE the condition that should be fulfilled by two matrices A&B to get the product AB and BA

SIMPLE INTEREST, A payday loan company charges a $95 fee for a $500 payday ...

A payday loan company charges a $95 fee for a $500 payday loan that will be repaid in 11 days. Treating the fee as interest paid, what is the equivalent annual interest rate?

VECTORS, OQRS IS A QUADRILATERAL SUCH THAT OQ= -6,3 OR= -3,7 AND OS= 1,5. T...

OQRS IS A QUADRILATERAL SUCH THAT OQ= -6,3 OR= -3,7 AND OS= 1,5. T IS ON OQ SUCH THAT OT: TQ= 1:2 PROVE THAT QRST IS AA PARALLEGRRAM

Cubic math, A fish tank has the base area of 45 cm3 and is filled to the de...

A fish tank has the base area of 45 cm3 and is filled to the depth of 12 cm.If the height is 25 cm then how much more will be needed to fill the rest of the tank?

Calculus, what is the derivatives of y=u/5+7 and u=5x-35 using the chain ru...

what is the derivatives of y=u/5+7 and u=5x-35 using the chain rule?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd