Measure and set frequency by using an oscilloscope, Electrical Engineering

Assignment Help:

1. Introduction:

Theory: Frequency is the number of occurrences of a repeating event per unit time. It can also be defined as the number of repetitions (cycles) of a waveform that appear in a one second. It is very important to measure the frequency of a waveform passed through a circuit used in various electronic gadgets. The frequency can be measured using the oscilloscope using the formula,

F= 1 / T

Hence, if the Time period (T) gets measured, the frequency also can be calculated. Time period is defined as the duration between two adjacent repeating events.

Material Required: Oscilloscope, frequency generator, connecting wires.

Description and Aim: To measure and set frequency by using an oscilloscope.

The frequency is fed into the oscilloscope by using a generator. Hence, oscilloscope will show the frequency signal on a visual display. The oscilloscope display is adjusted so that a clear wave form is seen on the display. The time period is calculated from this waveform.

F = 1/T

2. Method:

Step 1) Use terminal ports to connect generator to DC/AC waveforms circuit block. Now, use two port connector to connect generator source to R1.

Step2) From the generator, set frequency = 1Hz roughly, and select the sine wave. To calibrate the frequency, use dial setting properly. Now, connect channel 1 probe of oscilloscope across the resistor R1. Adjust generator amplitude so that

V(R1) = Vpk-pk = 6 V

Step 3) Set time base control = 0.1 ms/div. Adjust the frequency of generator for a waveform cycle that is seven divisions wide on the horizontal axis (time axis). Measure the no of divisions on the oscilloscope display.

3. Results: (check the readings.. it shud be close to 1 hz as you have set a rough reading of 1 HZ in generator...for that you can change the no of measured time divisions to 8....also note down the unit of signals...was it mHz or Hz)

Vpk-pk = 6 V

No of time divisions for one waveform = 7

One time division = 0.1ms/div

Total time period  = 7 * 0.1 = 0.7 ms

Frequency = F = 1 / T = 1 / 0.7  = 1.42 Hz.

4. Discussion:

The frequency measured using the oscilloscope is 1.42Hz.  This frequency is close to the frequency signal from the generator as the dial was set to 1 Hz roughly. There is a difference between the two frequencies due to reasons like attenuation in the circuit components, degree of accuracy to measure width of waveform on oscilloscope (i.e. divisions in waveform), fluctuations in the generator etc. To precisely read the circuit we can set the signal more accurately in the generator using dial up knob and then measure the time period at oscilloscope.


Related Discussions:- Measure and set frequency by using an oscilloscope

Explain ferrites suitability for high frequency application, Explain Suitab...

Explain Suitability of ferrites for high frequency application. Ferrites are extensively used in micro wave equipments and in computers. Ferrites are advantageous at high frequ

Calculate the maximum power that transmitted to the load, Calculate the Max...

Calculate the Maximum Power That Transmitted To the Load? A 25 MW load at the 33 kV receiving-end busbar of a short 3-phase transmission line has a power factor of 0.8 lagging.

Physical operation of the junction of diode, Q. Physical operation of the j...

Q. Physical operation of the junction of diode? The physical operation of the junction can be described in terms of the charge-flow processes. Usually there is a greater concen

Why is an emitter bypass capacitor in amplifier, Q.  Why is an emitter bypa...

Q.  Why is an emitter bypass capacitor used in an RC coupled amplifier? If an emitter resistor Re is used for self-bias in an amplifier and if it is desired to avoid the degene

Simulink connection, I can,t connect a new subsystem of solar module with a...

I can,t connect a new subsystem of solar module with a capacitor and inductor why and how to solve

Calculate the v number and the number of guided modes, A multimode step ind...

A multimode step index fibre along with a core diameter of 80µm and a associative refractive index difference of 1.5% is operating at a wavelength of 0.85µm. If the core refractive

What is the voltage controlled resistance region, Q. What is the Voltage co...

Q. What is the Voltage controlled resistance region?  In this region the JFET can actually be employed as a variable resistor whose resistance is controlled by the applied gate

Briefly explain energy and power, Q. Briefly Explain Energy and Power? ...

Q. Briefly Explain Energy and Power? If a charge dq gives up energy dw when going from point a to point b, then the voltage across those points is defined as v = dw/dq If

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd