Maximization problem, Game Theory

Assignment Help:

Two individuals (i ∈ {1, 2}) work independently on a joint project. They each independently decide how much e ort ei they put. E ort choice has to be any real number between 0 and 1 (ei ∈ [0, 1] not just 0 or 1). The cost of putting an amount of e ffort ei is n e2i/2, where n is a parameter greater or equal than 2. If individual i puts e ffort ei, then he succeeds with probability ei and fails with probability 1 - ei. The probability of success of the two agents are independent; this means that both succeed with probability e1x e2, 1 succeeds and 2 fails with probability e1 x(1 - e2), 1 fails and 2 succeeds with probability (1 - e1)e2, and both fail with probability (1 - e1)  (1 - e2).

If at least one of the individuals succeeds then, independently of who did succeed, both individuals get a payo of 1. If none of them succeeds, both individuals get 0. Therefore, each individual is a ected by the action of the other. However, individuals choose the level of e ort that maximizes their own expected utility (bene t minus cost of e ort).

(a) Write down the expected utility of individuals 1 and 2 (note that the utility of 1 depends on the e orts of 1 and 2 and the utility of 2 depends on the e orts of 1 and 2). [Hint. The expected bene t of 1 is the probability that 1 and/or 2 succeed times the payo if 1 and/or 2 succeed plus the probability that both 1 and 2 fail times the payo if both 1 and 2 fail.]

(b) Find the Nash equilibrium of this game, that is, the optimal level of e ort. Find the expected utility of each individual in equilibrium (use the rst-order condition and make sure that the second-order condition is satis ed). Suppose that a benevolent dictator can choose the  level of e ort that both individuals must exert. He chooses the e ort levels that maximize the sum of the expected utilities of both agents (these e orts are also called socially optimal levels).

(c) Write down the maximization problem of the benevolent dictator.

(d) Find the e ort levels that the dictator imposes on each individual (use the rst-order condition and assume that the second-order condition is satis ed). Find the expected utility of each individual.

(e) Compare the e ort level and nal utility of each individual in the cases of Nash Equilibrium (sel sh individual maximization) and benevolent dictatorship.

 


Related Discussions:- Maximization problem

Games with sequential moves-president liv problem , The most basic version ...

The most basic version of a LIV allows the executive office holder (Governor or President) to accept part of a bill passed by the legislature (so that part becomes law) and to veto

Ordinal payoffs, Ordinal payoffs are numbers representing the outcomes of a...

Ordinal payoffs are numbers representing the outcomes of a game where the worth of the numbers isn't vital, however solely the ordering of numbers. for instance, when solving for a

Strategic kind, The strategic (or normal) kind may be a matrix illustration...

The strategic (or normal) kind may be a matrix illustration of a simultaneous game. for 2 players, one is that the "row" player, and also the different, the "column" player. every

Find the nash equilibria of game - bimatrix of strategies, Players 1 and 2 ...

Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would like to keep s 1 and s 2 . Furthermore, players' choices have to be

Prisoners'' dilemma scenario, Scenario Two conspirators are arrested an...

Scenario Two conspirators are arrested and interrogated separately. If one implicates the opposite, he might go free whereas the opposite receives a life sentence. Yet, if each

Games sequential moves-game played b/w pitcher and batter, Problem: Consid...

Problem: Consider a (simplified) game played between a pitcher (who chooses between throwing a fastball or a curve) and a batter (who chooses which pitch to expect). The batter ha

Games with sequential moves:rollback equilibrium, Rollback shows that Boein...

Rollback shows that Boeing chooses peace over war if Airbus enters, so Airbus will enter. Rollback equilibrium entails Airbus playing “Enter” and Boeing playing “Peace if entry”; e

Bayes rule, Treating probability as a logic, Thomas Bayes defined the follo...

Treating probability as a logic, Thomas Bayes defined the following: Pr(X|Y)=Pr(Y|X)Pr(X)/Pr(Y) For example, probability that the weather was bad given that our friends playe

Fixed worth auction, Not technically an auction, however a posted-price pro...

Not technically an auction, however a posted-price procedure during which the auctioneer sets a worth and sells to the primary bidder willing to pay it. The auction ends as soon as

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd