Limits at infinity, part i, Mathematics

Assignment Help:

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean one of the given two limits.

328_limit70.png

In other terms, we are going to be looking at what happens to a function if we allow x get extremely large in either the +ve or -ve sense. Also, as we'll rapidly see, these limits may also have infinity as a value.

Firstly, let's note that the set of Facts through the Infinite Limit section also hold if the replace the1395_limit71.png   .  The proof of this is closely identical to the proof of the original set of facts along with only minor modifications to manage the change in the limit and hence is left to the reader. Actually, many of the limits that we're going to be looking at we will require the following two facts.

Fact 1

1. If r means to a positive rational number and c means to any real number then,

1381_limit72.png

2. If r is a positive rational number, c is any real number and xr   is explained for x < 0 then,

2426_limit73.png

The first part of this fact has to make sense if you think regarding it.  Since we are requiring r > 0 we know that xr will stay in the denominator.  Next as we enhance x then xr will also enhance.  So, we have a constant divided by an increasingly large number and hence the result will be increasingly small.  Or, in the limit we will obtain zero.

The second part is closely identical except we require worrying about xr being explained for negative x. Here, this condition is to avoid cases such as r =  1/2 .  If this r were let then we'd be taking the square root of -ve numbers which would be complex and we desire to avoid that at this level.

Note that the sign of c will not influence the answer.  In spite of of the sign of c still we'll have a constant divided by a very large number that will result in a extremely small number and the larger x get the smaller the fraction gets. The sign of c will influence which direction the fraction approaches zero (i.e. from the positive or negative side) however it still approaches zero.

Let's begin with the examples with one that will lead us to a nice idea which we'll employ on a regular basis regarding limits at infinity for polynomials.


Related Discussions:- Limits at infinity, part i

Detemine multiplying a polynomial by a monomial, Detemine Multiplying a Pol...

Detemine Multiplying a Polynomial by a Monomial? To multiply a polynomial by a monomial, use the distributive property. Let's start by talking about ordinary numbers. Say th

Explain how we converting fractions to percents, Explain how we Converting ...

Explain how we Converting Fractions to Percents ? To convert a fraction to a percent: 1. Convert the fraction to a decimal using long division. 2. Move the decimal point two p

Find out the minimum distance from the origin, Problem 1. Find the maximum...

Problem 1. Find the maximum and the minimum distance from the origin to the ellipse x 2 + xy + y 2 = 3. Hints: (i) Use x 2 + y 2 as your objective function; (ii) You c

How long will it take her to save $350, Each week Jaime saves $25. How long...

Each week Jaime saves $25. How long will it take her to save $350? Divide $350 by $25; 350 ÷ 25 = 14 weeks.

Markup & markdown, if prices are calculatead with a 35% markup based on cos...

if prices are calculatead with a 35% markup based on cost,what is the percent that those prices should be marked down to get back to their original cost?Choose any convenient cost

Complex number, a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.fi...

a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.find the value of k

Calculate percentage of increasing customer, Coastal Cable had 1,440,000 cu...

Coastal Cable had 1,440,000 customers within January of 2002. During the first half of 2002 the company launched a large advertising campaign. Through the end of 2002 they had 1,80

What is exponential functions, What is Exponential Functions ? Exponent La...

What is Exponential Functions ? Exponent Laws Review: A) Ax / Ay = A(x + y) B) Ax / Ay = A(x - y) C) (ABC)x = AxBxCx D) ((Ax)y)z = Axyz E) (A/B)x = Ax /Bx Definition

What is the objective of lipids metabolism, What is the objective of lipids...

What is the objective of lipids metabolism ? After studying this unit, you will be able to: 1. explain how fatty acids are oxidized for the production of energy, 2. describe

Simpson rule - approximating definite integrals, Simpson's Rule - Approxima...

Simpson's Rule - Approximating Definite Integrals This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] int

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd