Limit comparison test - sequences and series, Mathematics

Assignment Help:

Limit Comparison Test

Assume that we have two series ∑an and ∑bn with an, bn  ≥ 0 for all n. Determine,

444_Limit Comparison Test 1.png

If c is positive (i.e. c > 0 ) and is finite (i.e. c < ∞ ) afterwards either both series converge or both of the series diverge.

Notice that it doesn't actually matter which series term is in the numerator for this test, we could just have easily illustrated c as,

1309_Limit Comparison Test 2.png

and we would get similar results. To observe why this is, consider the subsequent two definitions.

131_Limit Comparison Test 3.png

Initiate with the first definition and rewrite it as follows, afterwards take the limit.

1240_Limit Comparison Test 4.png

Alternatively, if ?c is positive and finite then so is c‾ and if c‾ is positive and finite then so is c.  Similarly if c‾ = 0 then c = ∞ and if c‾ = ∞ then c = 0. Both of the above definitions will give similar results from the test so don't worry as regards which series terms should be in the numerator and that should be in the denominator.  Select this to make the limit easy to calculate.

As well, this really is a comparison test in some other ways.  If c is positive and finite this is saying that both of the series terms will behave in usually the same way and thus we can expect the series themselves to as well behave in an identical fashion.  If c = 0 or c = ∞ we can't say this and thus the test fails to provide any information. 

The limit in this test will frequently be written like this:

2394_Limit Comparison Test 5.png

as frequently both terms will be fractions and this will build the limit easier to deal with.


Related Discussions:- Limit comparison test - sequences and series

Compound interest, Ask question #Minimum 100 words accMick invested $5516 i...

Ask question #Minimum 100 words accMick invested $5516 in an account at 14% compounded quarterly. Calculate the total investment after 1 years.

Diffrentiation, y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx...

y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx = (a^x)(lnx)f''(a^x), .........(1) but f(sinx) = lnx implies f(x) = ln(arcsinx) hence f''(x) = (1/arcsinx) (1/ ( ( 1-x

Fundamental theorem of integral facts , Fundamental Theorem of Calculus, Pa...

Fundamental Theorem of Calculus, Part II  Assume f(x) is a continuous function on [a,b] and also assume that F(x) is any anti- derivative for f(x). Hence, a ∫ b f(x) dx =

Exponents, i need help with exponents and how to add them

i need help with exponents and how to add them

Sets, creative assignment about sets

creative assignment about sets

Subtract, Ask question Minimum 100 words accepted# 1000-101

Ask question Minimum 100 words accepted# 1000-101

Demerits and merit-the mode, The mode Merits i.  This can be dete...

The mode Merits i.  This can be determined from incomplete data given the observations along with the highest frequency are already known ii.  The mode has some applic

Estimate weight if telephone pole weighs 11.5 pounds foot, If a telephone p...

If a telephone pole weighs 11.5 pounds per foot, how much does a 32-foot pole weigh? Multiply 11.5 by 32; 11.5 × 32 = 368 pounds.

Determine radicals in exponent form, Evaluate following.               ...

Evaluate following.                √16 and Solution To evaluate these first we will convert them to exponent form and then evaluate that since we already know how to

Example of graphing equations, Example of Graphing Equations: Example...

Example of Graphing Equations: Example: By using the above figure, find out the distance traveled if the average speed is 20 mph and the time traveled is 40 minutes. T

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd