Lagrange multipliertest, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  There is autocorrelation

The Alternative Hypothesis - H1: There is no autocorrelation

Rejection Criteria: Reject H0 (n-s)R2 >641_Partial Autocorrelation Function1.png = (1515 - 4) x (0.01) = 15.11 > 9.49 (641_Partial Autocorrelation Function1.png)

1515 cases used, 4 cases contain missing values

Since 15.11 > 9.49 the chi-squared value with 4 lags (ET-1, ET-2, ET-3, and ET-4) there is evidence to suggest that we reject H0 meaning that there is no autocorrelation.    

The regression equation is

RESI1 = - 0.0011 + 0.000005 totexp - 0.000001 income + 0.000017 age + 0.00007 nk

        + 0.0085 ET-1 + 0.0070 ET-2 - 0.0284 ET-3 - 0.0074 ET-4

Predictor         Coef     SE Coef                 T      P

Constant       -0.00105     0.01375        -0.08  0.939

totexp          0.00000471  0.00006080   0.08  0.938

income        -0.00000082  0.00004314  -0.02  0.985

age              0.0000167   0.0003090     0.05  0.957

nk                0.000071     0.004785       0.01  0.988

ET-1             0.00847       0.02580         0.33  0.743

ET-2             0.00700       0.02584         0.27  0.786

ET-3           -0.02842       0.02587        -1.10  0.272

ET-4          -0.00743       0.02592         -0.29  0.774

As the T value decreases, the P value increases which is noticeable above due to the inclusions of lags. Most of the T values are now closer to 0 which shows that there is less reliability of the coefficient.  ET-3 will be included in a further regression analysis as it is significant with a value of -1.10, conversely ET-1, ET-2, ET-4 will be removed as they are insignificant with low T values.     

S = 0.0905514   R-Sq = 0.1%   R-Sq(adj) = 0.0%

The inclusion of lags has caused the r-squared to be really low at 0.1% which certainly suggests that the model is inadequate for explaining the Y variable. It also indicates that data points are distributed away from the line of best fit and that the independent variables are poor predictors for the dependent variable. The remaining percentage (99.9%) is the variation which is unknown.

 

Analysis of Variance

 

Source               DF         SS        MS     F      P

Regression        8    0.012127  0.001516  0.18  0.993

Residual Error  1506  12.348529  0.008200

Total                1514  12.360656

Source  DF    Seq SS

totexp   1  0.000029

income  1  0.000005

age       1  0.000011

nk         1  0.000000

ET-1      1  0.000903

ET-2      1  0.000544

ET-3      1  0.009961

ET-4      1  0.000673

Since the F value is small at 0.18 and the P value is high 0.993 it reveals that there is no relationship between the Y dependent variable and X independent variables. This indicates that as it is 0.18 it does not support the model and therefore the slopes are equal to 0.


Related Discussions:- Lagrange multipliertest

Determine the probablity, Dr. Stallter has been teaching basic statistics f...

Dr. Stallter has been teaching basic statistics for many years. She knows that 80% of the students will complete the assigned problems. She has also determined that among those who

Curvature measures, The diagnostic tools or devices used to approach the cl...

The diagnostic tools or devices used to approach the closeness to the linearity of the non-linear model. They calculate the deviation of so-called expectation surface from the plan

Group divisible design, Group visible design is an arrangement of the v mn ...

Group visible design is an arrangement of the v mn treatments in b blocks such that: * Each block comprises k distinct treatments k5v; * Each treatment is replicated r number

Describe longini koopman model, Longini Koopman model : In epidemiology the...

Longini Koopman model : In epidemiology the model for primary and secondary infection, based on the classification of the extra-binomial variation in an infection rate which might

Explain initial data analysis (ida), Initial data analysis (IDA): The firs...

Initial data analysis (IDA): The first phase in the examination of the data set which comprises  number of informal steps including the following steps * checking the quality o

Explain kurtosis, Kurtosis: The extent to which the peak of the unimodal p...

Kurtosis: The extent to which the peak of the unimodal probability distribution or the frequency distribution departs from its shape of the normal distribution, by either being mo

Dummy variables, The variables resulting from the recoding categorical vari...

The variables resulting from the recoding categorical variables with more than two categories into the sequence of binary variables. Marital status, for instance, if originally lab

Option-3 scheme, Option-3 scheme is a scheme of measurement used in the si...

Option-3 scheme is a scheme of measurement used in the situations investigating possible changes over the time in longitudinal data. The scheme is planned to prevent measurement o

Explain johnson-neyman technique, Johnson-Neyman technique:  The technique ...

Johnson-Neyman technique:  The technique which can be used in the situations where analysis of the covariance is not valid because of the heterogeneity of slopes. With this method

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd