Lagrange multipliertest, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0:  There is autocorrelation

The Alternative Hypothesis - H1: There is no autocorrelation

Rejection Criteria: Reject H0 (n-s)R2 >641_Partial Autocorrelation Function1.png = (1515 - 4) x (0.01) = 15.11 > 9.49 (641_Partial Autocorrelation Function1.png)

1515 cases used, 4 cases contain missing values

Since 15.11 > 9.49 the chi-squared value with 4 lags (ET-1, ET-2, ET-3, and ET-4) there is evidence to suggest that we reject H0 meaning that there is no autocorrelation.    

The regression equation is

RESI1 = - 0.0011 + 0.000005 totexp - 0.000001 income + 0.000017 age + 0.00007 nk

        + 0.0085 ET-1 + 0.0070 ET-2 - 0.0284 ET-3 - 0.0074 ET-4

Predictor         Coef     SE Coef                 T      P

Constant       -0.00105     0.01375        -0.08  0.939

totexp          0.00000471  0.00006080   0.08  0.938

income        -0.00000082  0.00004314  -0.02  0.985

age              0.0000167   0.0003090     0.05  0.957

nk                0.000071     0.004785       0.01  0.988

ET-1             0.00847       0.02580         0.33  0.743

ET-2             0.00700       0.02584         0.27  0.786

ET-3           -0.02842       0.02587        -1.10  0.272

ET-4          -0.00743       0.02592         -0.29  0.774

As the T value decreases, the P value increases which is noticeable above due to the inclusions of lags. Most of the T values are now closer to 0 which shows that there is less reliability of the coefficient.  ET-3 will be included in a further regression analysis as it is significant with a value of -1.10, conversely ET-1, ET-2, ET-4 will be removed as they are insignificant with low T values.     

S = 0.0905514   R-Sq = 0.1%   R-Sq(adj) = 0.0%

The inclusion of lags has caused the r-squared to be really low at 0.1% which certainly suggests that the model is inadequate for explaining the Y variable. It also indicates that data points are distributed away from the line of best fit and that the independent variables are poor predictors for the dependent variable. The remaining percentage (99.9%) is the variation which is unknown.

 

Analysis of Variance

 

Source               DF         SS        MS     F      P

Regression        8    0.012127  0.001516  0.18  0.993

Residual Error  1506  12.348529  0.008200

Total                1514  12.360656

Source  DF    Seq SS

totexp   1  0.000029

income  1  0.000005

age       1  0.000011

nk         1  0.000000

ET-1      1  0.000903

ET-2      1  0.000544

ET-3      1  0.009961

ET-4      1  0.000673

Since the F value is small at 0.18 and the P value is high 0.993 it reveals that there is no relationship between the Y dependent variable and X independent variables. This indicates that as it is 0.18 it does not support the model and therefore the slopes are equal to 0.


Related Discussions:- Lagrange multipliertest

Quality control procedures, Quality control procedures is the statistical ...

Quality control procedures is the statistical process designed to ensure that the precision and accuracy of, for instance, a laboratory test, are maintained within the acceptable

F-test, A test for equality of the variances of the two populations having ...

A test for equality of the variances of the two populations having normal distributions, based on the ratio of the variances of the sample of observations taken from each. Most fre

Fuzzy set theory, A radically different approach of dealing with the uncert...

A radically different approach of dealing with the uncertainty than the traditional probabilistic and the statistical methods. The necessary feature of the fuzzy set is a membershi

Describe non linear model, Non linear model : A model which is non-linear i...

Non linear model : A model which is non-linear in the parameters, for instance are   Some such type of models can be converted into the linear models by linearization (the s

Assignment, i need help for my assignment and the deadline is Friday

i need help for my assignment and the deadline is Friday

Chernoff''s faces, Chernoff's faces : A method or technique for representin...

Chernoff's faces : A method or technique for representing the multivariate data graphically. Each observation is represented by the computer-created face, the features of which are

Describe ignorability., Ignorability : The missing data mechanism is said t...

Ignorability : The missing data mechanism is said to be ignorable for likelihood inference if (1) the joint likelihood for the responses of the interest and missing data indicators

Cartogram, Cartogram : It is the diagram in which descriptive statistical i...

Cartogram : It is the diagram in which descriptive statistical information is displayed on the geographical map by the means of shading, different symbols or in some other possibly

Odds ratio, Odds ratio is the ratio of the odds for the binary variable in...

Odds ratio is the ratio of the odds for the binary variable in two groups of the subjects, such as, males and females. If the two possible states of variable are labeled as 'succe

Chains of infection, Chains of infection : The description of the course of...

Chains of infection : The description of the course of infection among the group of individuals. The susceptibles infected by the direct contact with the introductory cases are sai

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd