Inverse tangent, Mathematics

Assignment Help:

Inverse Tangent : Following is the definition of the inverse tangent.

 y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2

Again, we have a limitation on y, however notice that we can't allow y be either of the two endpoints in the limitation above since tangent isn't even described at those two points. In order to convince yourself that this range will cover all possible values of tangent do a quick sketch of the tangent function and we can see that in this range we do indeed cover all possible values of tangent. Also, in this case there is no limitation on x since tangent can take on all possible values.

Example   Evaluate tan -1 1

Solution : Following we are asking,

                                                              tan y =1

where y satisfies the limitation given above.  From a unit circle we can illustrated that

 y = ∏ /4.

Since there is no limitation on x we can ask for the limits of the inverse tangent function as x goes to plus or minus infinity.  In order to do this we'll require the graph of the inverse tangent function. This is illustrated below.

1329_inverse tangent.png

From this graph we can illustrates that

1944_inverse tengent1.png

The tangent & inverse tangent functions are inverse functions hence,

tan ( tan -1 x )= x                          tan -1 ( tan x ) =x

Thus to determine the derivative of the inverse tangent function we can begin with

f ( x ) = tan x                                                  g ( x ) = tan -1 x

Then we have,

g′ ( x ) =        1            /f ′ ( g ( x )) = sec2 (tan -1 x )

Simplifying the denominator is alike to the inverse sine, however different sufficient to warrant illustrating the details. We'll begin with the definition of the inverse tangent.

                                        y = tan -1 x  ⇒ tan y = x

Then the denominator is,

                                         sec2 (tan -1 x ) = sec2  y

Now, if we begin with the fact that

                                         cos2  y + sin 2  y = 1

and divide every term by cos2 y we will get,

                                          1 + tan 2  y = sec2  y

Then the denominator is,

 sec2 (tan -1 x ) = sec2  y = 1 + tan 2  y

At last by using the second portion of the definition of the inverse tangent function specified us,

                                       sec2 ( tan -1 x ) = 1 + tan 2  y = 1 + x2

Then the derivative of the inverse tangent is,

                                d (tan -1 x ) / dx =1 /1 + x2

There are three more inverse trig functions however the three illustrated here the most common ones. Formulas for remaining three could be derived through a similar procedure as we did those above.

Following are the derivatives of all six inverse trig functions.

1061_inverse tangent2.png


Related Discussions:- Inverse tangent

Partial derivatives - set theory, Partial Derivatives Partial derivati...

Partial Derivatives Partial derivatives are used while we want to investigate the effect of one independent variable on dependent variable. For illustration, the revenues of a

Linear equation, tens digit of a 2-digit number is twice its unit digit. If...

tens digit of a 2-digit number is twice its unit digit. If the sum of the digit is 12, find the number.

Non-homogeneous differential equations, The Definition- The definition of ...

The Definition- The definition of the Laplace transforms. We will also calculate a couple Laplace transforms by using the definition. Laplace Transforms- As the earlier secti

Find the area of shaded region, Find the area of shaded region, if the side...

Find the area of shaded region, if the side of square is 28cm and radius of the sector is ½ the length of side of square.

Consumer behaviour.., consumer behaviour in my feild of studies accounting ...

consumer behaviour in my feild of studies accounting ..

Velocity and acceleration - three dimensional space, Velocity and Accelerat...

Velocity and Acceleration - Three Dimensional Space In this part we need to take a look at the velocity and acceleration of a moving object.    From Calculus I we are famili

Calculate time interval, From top of a tower a stone is thrown up and it re...

From top of a tower a stone is thrown up and it reaches the ground in time t1. A second stone is thrown down with the same speed and it reaches the ground in t2. A third stone is r

Constrcut the adjacency matrix, Constrcut the adjacency matrix and the adja...

Constrcut the adjacency matrix and the adjacency lists for the graph G belowr.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd