Inverse functions, Algebra

Assignment Help:

In previous section we looked at the two functions  f ( x) = 3x - 2 and g ( x )= x/3 + 2/3 and saw that

                                         ( f o g ) ( x ) =(g o f )( x ) = x

and as noted in that section it means that these are very special functions. Let's see what makes them so special.  Assume the following evaluations.

f ( -1) = 3( -1) - 2 = -5 ⇒     g ( -5) = -5/3 + 2/3 = -3/3 = -1

g ( 2) = 2/3 +2/3 = 4 /3       ⇒ f ( 4 /3)=3(4/3 ) - 2 = 4 - 2 = 2

In first one we plugged x = -1 into f ( x ) and got a value of -5. Then we turned around and

Plugged x = -5 into g ( x ) and got a value of -1, the number that we begin with.

In the second one we did something similar.  Here we plugged x = 2 into g ( x ) and got a value of 4/3 , we turned around & plugged this into f ( x ) & got a value of 2, that is again the number that we begin with.

Note that here we actually are doing some function composition.

The first one is actually,

                                        ( g o f ) ( -1) = g [f ( -1)]=  g [-5] = -1

and the second one is,

                          ( f o g ) ( 2) =f [g ( 2)]= f [ 4/3 ] = 2

So, just what is going on here?  In some manner we can think of these two functions as undoing what the other did to number.  In the first one we plugged x = -1 into f ( x ) and then plugged the result from this function evaluation back into g ( x ) and in some way g( x ) undid what f ( x ) had done to x = -1 and gave us back the original x which we started with.

Function pairs which exhibit this behavior are called inverse functions. Before formally explaining inverse functions and the notation which we're going to employ for them we have to get a definition out of the way.


Related Discussions:- Inverse functions

Polynomials, please help me understand polynomials- i get the small problem...

please help me understand polynomials- i get the small problems but i dont understand larger ones

Which quantity is bigger?, Sam is twice as old as John was two years ago. I...

Sam is twice as old as John was two years ago. If the difference between their ages be 2 years, how old is Sam today?

Polynomial inequalities, Now it is time to look at solving some more hard i...

Now it is time to look at solving some more hard inequalities.  In this section we will be solving (single) inequalities which involve polynomials of degree at least two.  Or, to p

Augmented matrices, In this section we have to take a look at the third met...

In this section we have to take a look at the third method for solving out systems of equations.  For systems of two equations it is possibly a little more complex than the methods

Need help Urgently!, I have quite a complex formula I need resolved, I can'...

I have quite a complex formula I need resolved, I can''t get my head around. I have got so far but I personally don''t know how to proceed further. HELP!

#tibobb, a painter charged $320 to paint two walls taht measure 12 feet by ...

a painter charged $320 to paint two walls taht measure 12 feet by 9ft and two walls that measured 10 ft by 9 ft. The client asks him to return to paint two walls that measue 15 ft

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd