Example of linear equations, Algebra

Assignment Help:

In a certain Algebra class there is a total 350 possible points. These points come through 5 homework sets which are worth 10 points each and 3 hour exams that are worth 100 points each.  A student has attained homework scores of 4, 8, 7, 7, & 9 and the first two exam scores are 78 & 83.  Supposing that grades are assigned according to the standard scale and there are no weights assigned to any of the grades is it probable for the student to attain an A in the class and if so what is the minimum score on the third exam which will give an A? What about a B?

Solution

Let's begin by defining p to be the minimum needed score on the third exam.

Now, let's remember how grades are set.  As there are no weights or anything on the grades, the grade will be set by first calculating the following percentage.

                            actual points            / total possible points  =  grade percentage

As we are using the standard scale if the grade percentage is 0.9 or higher the student will get an A.  Similarly if the grade percentage is among 0.8 & 0.9 the student will get a B.

We know that the overall possible points is 350 and the student contain a total points (by including the third exam) of,

                                 4 + 8 + 7 +7 +9 + 78 + 83 + p = 196 + p

The smallest possible percentage for an A is 0.9 and thus if  p is the minimum needed score on the third exam for an A we will have the given equation.

                                                  196 + p/350 = 0.9

It is a linear equation which we will need to solve for p.

196 + p = 0.9 (350)= 315                  ⇒          p = 315 -196 = 119

Thus, the minimum needed score on the third exam is 119.  It is a problem as the exam is worth only 100 points.  In other terms, the student will not be getting an A in the Algebra class.

Now let's verify if the student will get a B.  In this case the minimum percentage is 0.8.  Thus, to determine the minimum required score on the third exam for a B we will have to solve,

                                   196 + p /350 = 0.8

Solving out this for p gives,

                                 196 + p = 0.8 (350) =280           ⇒        p = 280 -196 =84

Thus, it is possible for the student to get a B in the class. All that the student will have to do is get at least an 84 on the third exam.


Related Discussions:- Example of linear equations

Graphing functions, Now we need to discuss graphing functions. If we recall...

Now we need to discuss graphing functions. If we recall from the earlier section we said that f ( x ) is nothing more than a fancy way of writing y. It means that already we kno

Central Angle, A segment of a circle has an area of 4.3 square feet, and th...

A segment of a circle has an area of 4.3 square feet, and the radius of the circle is 2 feet. Find the central angle.

Process for finding rational zeroes, Process for Finding Rational Zeroes ...

Process for Finding Rational Zeroes 1. Utilizes the rational root theorem to list all possible rational zeroes of the polynomial P ( x ) 2. Evaluate the polynomial at the nu

Complex solutions of quadratic equations, These are the only possibilities ...

These are the only possibilities for solving quadratic equations in standard form.  However Note that if we begin with rational expression in the equation we might get different so

Relationship between the graph of a function and its inverse, There is inte...

There is interesting relationship among the graph of function and its inverse. Here is the graph of the function & inverse from the first examples. We'll not deal along with the

DEMAND AND SUPPLY, Qs1=-7+P1 (2) Qd1=15-P1+2P2+P3 (3) Qs1=Qd1

Qs1=-7+P1 (2) Qd1=15-P1+2P2+P3 (3) Qs1=Qd1

, find the inverse function f(x)=log12(x

find the inverse function f(x)=log12(x)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd