Interpolation spleen and approximation spine, Computer Graphics

Assignment Help:

Q. Give the difference between interpolation spleen and approximation spine. Also mention the geometric and parametric continuity conditions in these curves.

Ans. A spleen surface can be described with two sets of orthogonal spleen curves. There are several different kinds of spleen specification that are used in graphics applications. Each individual specification simply refers to a particular type of polynomial with certain specified boundary conditions. Spleens are used in graphics application to design curve and surface shapes to digitize drawings for computer storage and to specify animation paths for the object of the camera in a scene. Typical CAD application for spleens includes the design of automobile bodies' aircraft and spacecraft surface and ship hulls.   Interpolation and Approximation Spleens We specify a spleen curve by giving a set of coordinate position called control points which indicate the general shape of the curve. These control points are then fitted with piecewise continuous parametric polynomial functions in one of two ways. When polynomial section are fitted so that the curve passes through each control point as in fig 1 the resulting curve is said to interpolate the set of control points. One the other hand when the polynomials are fitted to the general control point path without necessarily passing through any control point the resulting curve is said to approximate the set of control points. Interpolation curves are commonly used to digitize drawings or to specify animation paths. Approximation curves are primarily used as design tools to structure object surfaces. Fig.2 shows an approximation spleen surface created for a design application. Straight lines connect the control point positions above the surface. A spleen curve is defined modified and manipulated with operations in the control points a designer can set up an initial curve. After the polynomial fit is displayed for a given set of control points designer can then reposition some of all of the control points restructure the shape of the curve. In addition the curve can be translated rotated or scaled with transformation applied to the control points. CAD packages can also insert extra control points to aid a designer in adjusting the curve shapes. The convex polygon boundary that encloses a set of control points is called the convex hull. One way to envision the shape of a convex hull is to imagine a rubber band stretched around the positions of the control points so that each control point is either on the perimeter of the hull or inside it. Convex hulls provide a measure for the deviation of a curve or surface from the region bounding the control points. Some spleens are bounded by the convex hull thus ensuring that the polynomial smoothly follow the control points without erratic oscillations. Geometric and Parametric Continuity                                                                               

Geometric Continuity * Go: Curves are joined                                                                                                                    

 * G1: First derivatives are proportional at the join point. The curve tangents thus have the same direction, but not necessarily the same magnitude. i.e., C1' (1) = (a, b, c) and C2' (0) = (k*a, k*b, k*c).

*G2: First and second derivatives are proportional at join point.                                                       

Parametric Continuity

* C0: Curves are joined                                                                                                                

* C1: First derivatives equal                                                                                                                                        

* C2: First and second derivatives are equal. If is taken to be time this implies that the acceleration is continuous.      

* C n: nth derivatives are equal.                                                                                                             

 As their names imply geometric continuity requires the geometry to be continuous while parametric continuity requires the geometry to be continuous while parametric continuity requires that the underlying parameterization be continuous as well. Parametric continuity of order n implies geometric continuity of order n but not vice versa.                                                                                

Spleens   

* Splices are cubic curves which maintain C2 continuity.      

* Natural Spleen   - interpolates all of its control points.  - Equivalent to a thin strip of metal forced to pass through control points.  - No local control. 

* B-spleen   -local control.  - does not interpolate control points. 

The following is an example of a five segment B-spleen curve. The points which indicate the ends of the individual curve segments and thus the join points are known as the knots. 


Related Discussions:- Interpolation spleen and approximation spine

Graphics applications, The subsequent are also considered graphics applicat...

The subsequent are also considered graphics applications as: • Paint Programs: Permit you to create rough freehand drawings. The images are saved as bit maps and can simply be

Painting and drawing tools in multimedia, Painting and Drawing Tools Pa...

Painting and Drawing Tools Painting software is offered to producing crafted bitmapped images. Drawing software as Corel Draw and Canvas is offered to generating vector depend

Ray tracing - polygon rendering & ray tracing methods, Ray Tracing - Polygo...

Ray Tracing - Polygon Rendering & Ray Tracing Methods Ray tracing obeys all rays from the eye of the viewer back to the light sources. The method Ray tracing is very good at

Uniform b - spline curve, Uniform B - spline curve: When the spacing betwe...

Uniform B - spline curve: When the spacing between Knot values is constant, the resulting curve is called a uniform B- spline. Blending function for B- spline curves are defined b

Parallel source and distributed light source, Parallel source and Distribut...

Parallel source and Distributed light source a) Parallel source: this is to be noted that while point source is at an infinite distance then light rays are parallel and func

Windowing transformations - raster graphics and clipping, Windowing Transf...

Windowing Transformations - Raster Graphics and  Clipping From the above section of introduction, we understood the meaning of the viewport and term window that could again be

Describe transformation, What is Transformation?  Transformation is the...

What is Transformation?  Transformation is the process of introducing changes in the shape size and orientation of the object using scaling rotation reflection shearing & trans

Data set, In this project, the image data set consists of 320 training imag...

In this project, the image data set consists of 320 training images and 285 test images. Table 1 shows the image data set in details. In addition to the original images, th

Displacement mapping, Implement displacement mapping and bump mapping on a ...

Implement displacement mapping and bump mapping on a sphere. The displacement can be whatever your choice. The bump map can be whatever your choice as well.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd