Initial value problems, math, Mathematics

Assignment Help:
Write a Matlab function MyIVP that solves an initial-value problem (IVP) for a system of ordinary
differential equations (ODEs) of the form
x ?(t) = f (t, x(t)),
where f : R × Rn ? Rn is an arbitrary function with one one-dimensional input (for time t) and one n-dimensional input x, and n-dimensional output. The function should implement a Runge-Kutta formula (for example, the rk34 formula or the Dormand & Prince formula).
The initial value x0 is provided by the user of MyIVP. The first line of MyIVP (saved in a file MyIVP.m) should look like this
function [xend,t,xt]=MyIVP(f,x0,tspan,N) Inputs
• f: function defining the right-hand side of the ODE. f should accept two arguments: t (a number) and x (an n-dimensional vector). The function f should return an n-dimensional vector y (the time derivative). Typical calling sequence: y=f(t,x), returning the value of f at time t in position x.
• x0: initial value where integration starts from (n-dimensional vector).
• tspan: Starting time and end time for integration. Integration has to run from time t =tspan(1)
to time t =tspan(2).
• N: number of steps for integration. The integration stepsize h=(tspan(2)-tspan(1))/N should
be small.
Outputs
• xend: result of integration at t =tspan(2).
• t: vector of times at which intermediate values have been computed (this should have N + 1
entries).
• xt: intermediate values (n × (N + 1)-array). xt(:,k) should be the solution at t(k).
You can check the built-in variable nargout inside your function to see if the user wants to get three outputs or only the end value xend. If nargout==1 you don’t need to store the intermediate values.

Related Discussions:- Initial value problems, math

Find out that sets of functions are linearly dependent, Find out if the fol...

Find out if the following sets of functions are linearly dependent or independent.  (a) f (  x ) = 9 cos ( 2 x )    g (  x ) = 2 cos2 (  x ) -  2 sin 2 (  x ) (b) f

Sum and difference identities, Q. Sum and Difference Identities? Ans. ...

Q. Sum and Difference Identities? Ans. These six sum and difference identities express trigonometric functions of (u ± v) as functions of u and v alone.

Describe about arithmetic and geometric series, Describe about Arithmetic a...

Describe about Arithmetic and Geometric Series? When the terms of a sequence are added together instead of separated by commas, the sequence becomes a series. You will use seri

Determine the measurements of segments and angles, Determine the Measuremen...

Determine the Measurements of Segments and Angles Postulate 1.5 (The Distance Postulate) There is a unique positive number corresponding to every pair of points. Pos

Change of base of logarithms, Change of base: The final topic that we have...

Change of base: The final topic that we have to look at in this section is the change of base formula for logarithms. The change of base formula is,

Pigeonhole principle, By pigeonhole principle, show that if any five number...

By pigeonhole principle, show that if any five numbers from 1 to 8 are chosen, then two of them will add upto 9.    Answer: Let make four groups of two numbers from 1 to 8 like

Parity to De-Skew, Consider the following proposal to deskew a skewed bitst...

Consider the following proposal to deskew a skewed bitstream from a TRNG. Consider the bitstream to be a sequence of groups ot n bits for some n > 2. Take the first n bits, and o

''t'' distribution, The 't' distribution is a theoretical probability distr...

The 't' distribution is a theoretical probability distribution. The 't' distribution is symmetrical, bell-shaped, and to some extent similar to the standard normal curve. It has an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd